scholarly journals Analysis of symbol error rate for intelligent reflecting surface aided communications

2021 ◽  
Author(s):  
Lei Xu ◽  
Zhaorui Wang ◽  
Jing Chang ◽  
Hongyu Fang ◽  
Xiaohui Li
2021 ◽  
Vol 46 ◽  
pp. 101295
Author(s):  
Ali Mohammed A. Alkhazzar ◽  
Hassan Aghaeinia

2013 ◽  
Vol 330 ◽  
pp. 957-960
Author(s):  
Qiao Ling Du ◽  
Zhi Rui Wang ◽  
Yu Pei ◽  
Yi Ding Wang

This paper investigates the performance analysis of OQPSK in HF band for wireless sensor networks. An analytical model for getting symbol error rate (SER) is given in presence of Bi-Kappa noise in HF band. And the SER of OQPSK is given in AWGN and Rayleigh fading channel. Simulation results HF noise as Bi-Kappa noise should be investigated in HF band for WSN.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6421
Author(s):  
Joanna Gmitrowicz-Iwan ◽  
Magdalena Myszura ◽  
Tomasz Olenderek ◽  
Sławomir Ligęza ◽  
Heronim Olenderek

Recent years have brought dynamic developments in surveying equipment and techniques. These include reflectorless electromagnetic distance measurement (RL EDM), which is used in a range of devices, especially total stations. Studies concerning the influence of the reflecting surface on the accuracy of RL EDM tend to focus on the colour of the measurement surface, while the influence of the density and thickness of materials is usually neglected. Therefore, this study undertook to examine 53 samples representing various materials of dissimilar features: colour, type of surface and density. The results show that dark and mat surfaces cause higher RL EDM errors than bright, gloss materials. Nonetheless, 76% of the results were in compliance with equipment specifications. Moreover, it was found that the density of the samples had significant impact on the overall accuracy. RL EDM to EPS (expanded polystyrene sheets, low-density material, commonly called Styrofoam) involved a significantly higher error rate. It demonstrates that total station measurements and laser scanning should be performed cautiously, especially with regard to materials of low density (e.g., EPS) and on short distances, where the value of relative error is high.


2021 ◽  
Author(s):  
Fereshteh salimian rizi ◽  
Abolfazl Falahati

Abstract A composite α-µ/Lognormal fading channel is proposed with several channel performance criteria. This model considers the most effective occurrences in a fading channel, mainly non-linearity, multi-cluster nature of propagation medium, and shadowing effects. The new generation of communication systems is moving towards the use of millimetre waves (mmW). In this type of propagation, large-scale effects of fading channel on the received signal are significant, so in the proposed composite model, the lognormal distribution is considered to model large-scale effects of fading, which is the most accurate distribution to model shadowing. The Gaussian-Hermite quadrature sum is used to approximate the probability distribution function (PDF) of the proposed model. After calculating the statistics, the symbol error rate (SER) and ergodic capacity are computed. The Mellin transform technique is used to calculate the SER expression of different modulation schemes; then, ergodic capacity is computed for a diverse frequency spectrum. Finally, the Monte Carlo method is used to evaluate the analyses.


Sign in / Sign up

Export Citation Format

Share Document