Imaging simulation of single phase center multiple receiving beams synthetic aperture radar

2009 ◽  
Author(s):  
Yin Can-bin ◽  
Qin Wei-dong ◽  
Jia Xin
Author(s):  
Erfansyah Ali ◽  
Andriyan B Suksmono

One of methods in remote sensing is Synthetic Aperture Radar (SAR). When combined with Range DopplerAlgorithm (RDA) can produce smaller radar resolution only by using normal sized antenna placed atplatform. RDA is able to generate much wider aperture �synthetic� antenna, resulting very narrow beamwidthwhen reach earth's ground. By using already established 2D SAR methods in accuracy andprocessing speed this 3D SAR simulation was developed. Simulated on 15 x 15 pixels grayscale targets atdifferent heights, 3D SAR developed on this research can detect object's height accurately. Thissimulation was developed using JAVA as steppingstone in implementing SAR image processing in smallsystem like embedded system or micro computing which normally using C programming language.


2018 ◽  
Vol 10 (9) ◽  
pp. 1404 ◽  
Author(s):  
Chiung-Shen Ku ◽  
Kun-Shan Chen ◽  
Pao-Chi Chang ◽  
Yang-Lang Chang

Imaging simulation of synthetic aperture radar (SAR) is one of the potential tools in the field of remote sensing. The echo signal in imaging simulation based on the point target model cannot be linked to practical scenes due to the model being a simple mathematical form, stating only the synthetic process and lacking the physical process based on electromagnetic theory. In this paper, the full-wave method is applied to include the electromagnetic effects in raw data generation, and then a refined omega-K algorithm is used to perform image focusing. According to the proposed method, the focused images not only demonstrate the difference under dielectric constant variation but also present the diversified interaction among the targets with the spacing change. In addition, the images are simulated in different observation modes and bandwidths to provide a satisfactory reference for the design of system parameters. The simulation results from the full-wave method also compare well with chamber experiments. The simulation of SAR imaging based on a full-wave method offers more complete recovery of scattering information and is useful in designing future novel SAR systems and in speckle reduction analysis.


2012 ◽  
Vol 433-440 ◽  
pp. 2004-2010
Author(s):  
Su Yi Mon Su ◽  
Jian Cheng Fang

Digital signal processing is used to focus the image and obtain a higher resolution than achieved by conventional radar systems. This paper presents details of Synthetic Aperture Radar (SAR) signal processing and imaging technique with the goal of generating images. A Matlab based program is developed and coded for imaging simulation. It facilitates processing data and producing desired output. Then, we investigate the characteristics of Linear Frequency Modulated (LFM) signal prior to getting image results. The SAR properties in range and azimuth directions are described. The received signal and SAR raw data is theoretically described. In addition, the target reflection signal processing is also well presented. The SAR image formation is described using Range Doppler Algorithm (RDA). Finally, simulation parameters are computed and imaging simulation test is finished.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 419
Author(s):  
Jin Liu ◽  
Wei Wang ◽  
Hongjun Song

Weighting window functions are commonly used in Synthetic Aperture Radar (SAR) imaging to suppress the high Peak SideLobe Ratio (PSLR) at the price of probable Signal-to-Noise Ratio (SNR) loss and mainlobe widening. In this paper, based on the method of designing a mismatched filter, we have proposed a Quadratically Constrained Quadratic Program (QCQP) approach, which is a convex that can be solved efficiently, to optimize the weighting window function with both amplitude and phase, expecting to offer better imaging performance, especially on PSLR, SNR loss, and mainlobe width. According to this approach and its modified form, we are able to design window functions to optimize the PSLR or the SNR loss under different kinds of flexible and practical constraints. Compared to the ordinary real-valued and symmetric window functions, like the Taylor window, the designed window functions are complex-valued and can be asymmetric. By using Synthetic Aperture Radar (SAR) point target imaging simulation, we show that the optimized weighting window function can clearly show the weak target hidden in the sidelobes of the strong target.


Sign in / Sign up

Export Citation Format

Share Document