Configuration of energy storage system for distribution network with high penetration of PV

Author(s):  
Shaobo Lin ◽  
Minxiao Han ◽  
Ruixiang Fan ◽  
Xiaodong Hu
2020 ◽  
Vol 12 (15) ◽  
pp. 6154 ◽  
Author(s):  
Hui Wang ◽  
Jun Wang ◽  
Zailin Piao ◽  
Xiaofang Meng ◽  
Chao Sun ◽  
...  

High-penetration grid-connected photovoltaic (PV) systems can lead to reverse power flow, which can cause adverse effects, such as voltage over-limits and increased power loss, and affect the safety, reliability and economic operations of the distribution network. Reasonable energy storage optimization allocation and operation can effectively mitigate these disadvantages. In this paper, the optimal location, capacity and charge/discharge strategy of the energy storage system were simultaneously performed based on two objective functions that include voltage deviations and active power loss. The membership function and weighting method were used to combine the two objectives into a single objective. An energy storage optimization model for a distribution network considering PV and load power temporal changes was thus established, and the improved particle swarm optimization algorithm was utilized to solve the problem. Taking the Institute of Electrical and Electronic Engineers (IEEE)-33 bus system as an example, the optimal allocation and operation of the energy storage system was realized for the access of high penetration single-point and multi-point PV systems in the distribution network. The results of the power flow optimization in different scenarios were compared. The results show that using the proposed approach can improve the voltage quality, reduce the power loss, and reduce and smooth the transmission power of the upper-level grid.


Author(s):  
Jijun Liu ◽  
Yuxin Bai ◽  
Yingfeng He

This work aims at solving complex problems of the optimal scheduling model of active distribution network, teaching strategies are proposed to improve the global search ability of particle swarm optimization. Moreover, based on the improved Euclidean distance cyclic crowding sorting strategy, the convergence ability of Li Zhiquan algorithm is improved. With the cost and voltage indexes of the energy storage system of the distribution network as the goal, different optimized configuration schemes are constructed, and the improved HTL-MOPSO algorithm is adopted to find the solution. The results show that compared with the traditional TV-MOPSO algorithm, the proposed algorithm has better convergence performance and optimization ability, and has a lower economic cost. In short, the algorithm proposed can provide a basis for improving the optimization of active distribution network scheduling strategies.


Author(s):  
Zaid H. Ali ◽  
Ziyaad H. Saleh ◽  
Raid W. Daoud ◽  
Ahmed H. Ahmed

<p><span>This paper proposes a methodology for designing and operating a microgrid (MG) for the main campus of the Technical Institution Hawija. In this MG, a battery energy storage system (BESS), photovoltaic (PV) generation system, and controllable loads are included. Due to the high penetration of the PVs, over-voltage issues may occur in this MG. A novel operation strategy is considered by coordinating the BESS, PVs, and loads to prevent power outages and accomplish a secure operation of this MG. In this proposed approach, droop controllers have been implemented to provide the appropriate references for the PVs and BESS to maintain the voltage of the MG within a secure range. The generation of the PVs may be curtailed to guarantee the fidelity of the voltage. The intended simulations will be based on MATLAB/Simulink to show the efficacy of the intended design.</span></p><script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML&amp;delayStartupUntil=configured"></script><script id="texAllTheThingsPageScript" type="text/javascript" src="chrome-extension://cbimabofgmfdkicghcadidpemeenbffn/js/pageScript.js"></script>


Sign in / Sign up

Export Citation Format

Share Document