Microbalance sensor applications using the piezoelectric crystal material GaPO

Author(s):  
F. Krispel ◽  
C. Reiter ◽  
R. Schauperl ◽  
I. Mannelli ◽  
W. Wallnofer
2008 ◽  
Vol 459 (1-2) ◽  
pp. L1-L4 ◽  
Author(s):  
F.P. Yu ◽  
D.R. Yuan ◽  
X.L. Duan ◽  
L.M. Kong ◽  
X.Z. Shi ◽  
...  

CrystEngComm ◽  
2022 ◽  
Author(s):  
guoliang wang ◽  
Linfang Xie ◽  
Chao Jiang ◽  
Xueliang Liu ◽  
Yanlu Li ◽  
...  

Lithium niobate (LiNbO3, LN) is a kind of multifunctional crystal material. In this study, an optimum piezoelectric crystal cut (XZt/28°) with central resonance frequency of 150 kHz and stable electro-elastic...


Author(s):  
J.A. Eades ◽  
A. van Dun

The measurement of magnification in the electron microscope is always troublesome especially when a goniometer stage is in use, since there can be wide variations from calibrated values. One elegant method (L.M.Brown, private communication) of avoiding the difficulties of standard methods would be to fit a device which displaces the specimen a small but known distance and recording the displacement by a double exposure. Such a device would obviate the need for changing the specimen and guarantee that the magnification was measured under precisely the conditions used.Such a small displacement could be produced by any suitable transducer mounted in one of the specimen translation mechanisms. In the present case a piezoelectric crystal was used. Modern synthetic piezo electric ceramics readily give reproducible displacements in the right range for quite modest voltages (for example: Joyce and Wilson, 1969).


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


2000 ◽  
Vol 628 ◽  
Author(s):  
Mark A. Clarner ◽  
Michael J. Lochhead

ABSTRACTOrganically modified silica gels and dye-doped silica gels have been patterned into micrometer-scale structures on a substrate using micro molding in capillaries (MIMIC). This approach is from a class of elastomeric stamping and molding techniques collectively known as soft lithography. Soft lithography and sol-gel processing share attractive features in that they are relatively benign processes performed at ambient conditions, which makes both techniques compatible with a wide variety of organic molecules, molecular assemblies, and biomolecules. The combination of sol-gel and soft lithography, therefore, holds enormous promise as a tool for microfabrication of materials with optical, chemical, or biological functionality that are not readily patterned with conventional methods. This paper describes our investigation of micro-patterned organic-inorganic hybrid materials containing indicator dyes for microfluidic sensor applications. Reversible colorimetric pH sensing via entrapped reagents is demonstrated in a prototype microfluidic sensor element. Patterned structures range from one to tens of micrometers in cross-section and are up to centimeters in length. Fundamental chemical processing issues associated with mold filling, cracking and sensor stability are discussed.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 566 ◽  
Author(s):  
M. Akhtar ◽  
Ahmad Umar ◽  
Swati Sood ◽  
InSung Jung ◽  
H. Hegazy ◽  
...  

This paper reports the rapid synthesis, characterization, and photovoltaic and sensing applications of TiO2 nanoflowers prepared by a facile low-temperature solution process. The morphological characterizations clearly reveal the high-density growth of a three-dimensional flower-shaped structure composed of small petal-like rods. The detailed properties confirmed that the synthesized nanoflowers exhibited high crystallinity with anatase phase and possessed an energy bandgap of 3.2 eV. The synthesized TiO2 nanoflowers were utilized as photo-anode and electron-mediating materials to fabricate dye-sensitized solar cell (DSSC) and liquid nitroaniline sensor applications. The fabricated DSSC demonstrated a moderate conversion efficiency of ~3.64% with a maximum incident photon to current efficiency (IPCE) of ~41% at 540 nm. The fabricated liquid nitroaniline sensor demonstrated a good sensitivity of ~268.9 μA mM−1 cm−2 with a low detection limit of 1.05 mM in a short response time of 10 s.


Sign in / Sign up

Export Citation Format

Share Document