Research on increasing the transmission capacity of existing transmission lines

Author(s):  
Bing Zhang ◽  
Lianguang Liu ◽  
Mingde Cui
Author(s):  
Baina He ◽  
Yadi Xie ◽  
Jingru Zhang ◽  
Nirmal-Kumar C. Nair ◽  
Xingmin He ◽  
...  

Abstract In the transmission line, the series compensation device is often used to improve the transmission capacity. However, when the fixed series capacitor (FSC) is used in high compensation series compensation device, the stability margin cannot meet the requirements. Therefore, thyristor controlled series compensator (TCSC) is often installed in transmission lines to improve the transmission capacity of the line and the stability of the system. For cost considerations, the hybrid compensation mode of FSC and TCSC is often adopted. However, when a single-phase grounding fault occurs in a transmission line with increased series compensation degree, the unreasonable distribution of FSC and TCSC will lead to the excessive amplitude of secondary arc current, which is not conducive to rapid arc extinguishing. To solve this problem, this paper is based on 1000 kV Changzhi-Nanyang-Jingmen UHV series compensation transmission system, using PSCAD simulation program to established UHV series compensation simulation model, The variation law of secondary arc current and recovery voltage during operation in fine tuning mode after adding TCSC to UHV transmission line is analyzed, and the effect of increasing series compensation degree on secondary arc current and recovery voltage characteristics is studied. And analyze the secondary arc current and recovery voltage when using different FSC and TCSC series compensation degree schemes, and get the most reasonable series compensation configuration scheme. The results show that TCSC compensation is more beneficial to arc extinguishing under the same series compensation. Compared with several series compensation schemes, it is found that with the increase of the proportion of TCSC, the amplitude of secondary arc current and recovery voltage vary greatly. Considering various factors, the scheme that is more conducive to accelerating arc extinguishing is chosen.


2014 ◽  
Vol 986-987 ◽  
pp. 239-242
Author(s):  
Bo Yang ◽  
Kui Hua Wu ◽  
Yi Qun Wang ◽  
Shen Quan Yang

The rapid growth of power grid load put forward higher requirements on the transmission capacity of line, with the growing tension of line corridors, building new transmission lines is becoming more and more difficult. Therefore, it is of realistic significance to analyze the transmission capacity of existing transmission line and fully tap the existing power grid transmission capacity. On the basis of previous studies, and consulting a large number of references, this paper summarizes and expounds the methods of improving transmission capacity by using the thermal rating analysis, introducing static thermal rating and real-time static thermal rating. Also, this paper verifies applications of the above methods in actual running environment.


2021 ◽  
Vol 289 ◽  
pp. 01013
Author(s):  
Vitaly Novokreshchenov

With series compensation of the line reactance, the problem of its protection against overcurrents arises regarding relay protection. The greater the degree of compensation, the greater the problem. When compensating for more than 50% of the reactance of the line, the protection of power transmission lines becomes practically impossible due to the failure or false operation of all existing kinds and types of protection [1, 2]. Therefore, as for now, the compensation of the line reactance usually is no more than 50% [3, 4], which does not allow to reveal the full potential of the line in terms of its transmission capacity. The goal of this research was to study the processes occurring in emergency modes on power lines equipped with a series capacitor bank, the understanding of which would help to produce algorithms that can protect power lines with SCB with a degree of the longitudinal resistance compensation of the line of more than 50%.


Author(s):  
Yang Mo ◽  
Yanling Wang ◽  
Likai Liang ◽  
Heji Li ◽  
Qiang Zhang ◽  
...  

Abstract Traditionally, transmission lines have been operated based on static thermal rating, which is determined by fixed and conservative meteorological data. It causes underutilization of potential transmission capacity. To overcome this limitation, this paper presents seasonal time scale, which can provide flexible ratings. Seasonal meteorological parameters are uncertain. The uncertainty can directly impact the conductor temperature, and eventually impact transmission capacity of the lines. In order to account for the uncertainty, this paper presents an uncertainty analysis model. This model consists of three parts: establishment of probability distribution models, Monte Carlo simulation, and operation risk assessment. In the case study, the actual meteorological data for 7 years in the Weihai is utilized, and is divided into four subsets by spring, summer, autumn and winter. The uncertainty analysis model is tested on an actual 47 km Wei-Kun line and a 4-bus power system. Results show that potential transmission capacity can be extracted if seasonal meteorological parameters are taken into account.


Vestnik IGEU ◽  
2020 ◽  
pp. 14-24
Author(s):  
V.P. Golov ◽  
A.V. Kalutskov ◽  
D.N. Kormilitsyn ◽  
O.S. Sukhanova

Currently there is a need to synchronize operation of the electric power system in the remote areas and increase of existing lines transmission capacity. The construction of new power transmission lines involves high economic expenditures. Well-known papers consider the issues of application of controlled series compensation devices only for long-distance power transmission lines with voltage of 500 kV and higher to increase the transmission capacity and the level of stability. The aim of the study is to increase the stability and the limit of the transmitted power when controlled series compensation devices are installed on 220 kV lines. It is necessary to develop a criterion of aperiodic steady-state stability of an electric power system with a 220 kV-controlled power transmission line. Methods of mathematical modeling of electric power system, the theory of long-distance power transmission lines and electromechanical transients, and methods of analyzing electric power system stability were used. A.M. Lyapunov’s first approximation method was used to develop a simplified mathematical model. We applied the developed software as a simulation tool. An analysis was carried out to study the influence of series compensation devices regulation coefficients on the aperiodic steady-state stability of the electric power system and the transmission capacity of 220 kV power transmission lines. A change in the modulus of voltage drop at the power transmission and the angle characteristics under the influence of the regulation coefficients of the series compensation device was revealed. A criterion of aperiodic steady-state stability has been developed for systems of this kind with controlled series compensation. It differs from traditional ones by considering the changes in the voltage drop in the power transmission and it allows more accurate estimation of the proximity to the stability threshold. An assessment of aperiodic steady-state stability according to the formulated criterion for an electric power system with a controlled series compensation device on a 220 kV line was obtained. The values of the control coefficients of the series compensation device have been determined. No violation of the steady-state stability occurs under the given values. The results can be used to solve the issues of increasing the transmission capacity of transmission lines to improve the stability of the system.


2012 ◽  
Vol 614-615 ◽  
pp. 1394-1400
Author(s):  
Wen Qing Yang ◽  
Wei Cao ◽  
Jian Kun Wu ◽  
Lin Chen

Power transmission is a key link in power system. As the increase of power supply, the transmission capacity of the lines should be enlarged too. In the developed area, the right-of-way for transmission line is hard to be obtained. And converting the existing HVAC overhead transmission lines using HVDC technology could enhance the transmission capability. There are three possible plans for different HVAC transmission lines: single-pole HVDC, bi-pole HVDC and tri-pole HVDC.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4603 ◽  
Author(s):  
Kevin Marnell ◽  
Manasseh Obi ◽  
Robert Bass

When the transmission capacity of an electrical system is insufficient to adequately serve customer demand, the transmission system is said to be experiencing congestion. More transmission lines can be built to increase capacity. However, transmission congestion typically only occurs during periods of peak demand, which occur just a few times per year; capitol-intensive investments in new transmission capacity address problems that occur infrequently. Alternative solutions to alleviated transmission congestion have been devised, including generation curtailment, demand response programs, and various remedial action schema. Though not currently a common solution, battery energy storage systems can also provide transmission congestion relief. Technological and market trends indicate the growing production capacity of battery energy storage systems and decreasing prices, which indicate the technology may soon become a viable option for providing congestion relief. Batteries can provide multiple ancillary services, and so can concurrently provide value through multiple revenue streams. In this manuscript, the authors present a systematic review of literature, technology, regulations, and projects related to the use of battery energy storage systems to provide transmission congestion relief.


2015 ◽  
Vol 752-753 ◽  
pp. 1139-1145
Author(s):  
Hao Yang ◽  
Fei Tang

There is different applicable transmission capacity and range between 1000kV and 500kV AC transmission. The traditional method is to use the continuous power flow algorithm by BPA simulation software. But this method is complicated and time-consuming. Calculation is particularly large when electricity has a variety of power demand analysis. This paper presents an algorithm based on the AC line transmission capacity, using MATLAB software programming to achieve the establishment of UHV AC transmission model and economical optimization strategy. The method can use thermal limit, voltage limit, landing stability constraints to get the AC line transmission capacity curve by considering the factor of power network strength. On the basis of this method, an UHV AC transmission model can be built combining with unit capacity annual cost algorithm, which can meet the power transmission of arbitrary transmission capacity and the optimal economic of any transmission distance, has an important reference significance and practical value for the planning and construction of electric transmission lines in China.


Sign in / Sign up

Export Citation Format

Share Document