scholarly journals Low frequency phase synchronisation analysis of MEG recordings from children with ADHD and controls using single channel ICA

Author(s):  
C. Demanuele ◽  
C.J. James ◽  
E.J.S. Sonuga-Barke ◽  
A. Capilla
2014 ◽  
Vol 624 ◽  
pp. 561-566
Author(s):  
Jun Wang ◽  
Shuo Feng

The paper introduces a system using PLL frequency modulation and demodulation technique, and using infrared as the carrier to realize wireless communication. CD4046 is a common CMOS low-frequency phase locked loopintegrated circuit, and it has the characteristics of high VCOlinearity, tunable center frequency and acquisition frequency range, low power consumption and simple for use. The paper introduces the design scheme using the technique for infrared communication, and proposes a method using sing-chip microcontroller to control single channel to realize the simultaneous transmission of acoustic signal and digital signal, which has great practicability.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V79-V86 ◽  
Author(s):  
Hakan Karsli ◽  
Derman Dondurur ◽  
Günay Çifçi

Time-dependent amplitude and phase information of stacked seismic data are processed independently using complex trace analysis in order to facilitate interpretation by improving resolution and decreasing random noise. We represent seismic traces using their envelopes and instantaneous phases obtained by the Hilbert transform. The proposed method reduces the amplitudes of the low-frequency components of the envelope, while preserving the phase information. Several tests are performed in order to investigate the behavior of the present method for resolution improvement and noise suppression. Applications on both 1D and 2D synthetic data show that the method is capable of reducing the amplitudes and temporal widths of the side lobes of the input wavelets, and hence, the spectral bandwidth of the input seismic data is enhanced, resulting in an improvement in the signal-to-noise ratio. The bright-spot anomalies observed on the stacked sections become clearer because the output seismic traces have a simplified appearance allowing an easier data interpretation. We recommend applying this simple signal processing for signal enhancement prior to interpretation, especially for single channel and low-fold seismic data.


2021 ◽  
Vol 9 (1) ◽  
pp. 70
Author(s):  
Pareng Rengi ◽  
Ulil Amri ◽  
Tomi Ramadona ◽  
Ediar Usman ◽  
Bustari Bustari

<p>Aruah Islands is located on an international shipping line adjacent to Malaysia. The important aspect in borderline management is the maritime resource potential, one of which is sea minerals. In order to dig the information about marine mineral resources in Aruah Islands, a high-resolution seismic reflection with low frequency was applied, which capable to detect the depth and identify the sedimentary layers clearly and accurately. The depth of water and sediment layers were detected using an echosounder, reason Navi sound type 210 with a tow fish 100 kHz and shallow seismic boomer with a single channel type and wave energy 200 Joules. Gravity core and grab sampler were used to collect the sediment sample. There were three stages on seismic interpretation: sequence analysis, facies analysis, and reflection character identification. Furthermore, sediments containing coarse sand-sized minerals were observed using a microscope. The measurement result of Aruah Islands water depth was ranging from 0-80 m, the deepest part is on the Northern of Batu Mandi island which was 80 m depth. Seismic profiles indicated that the upper layer of tertiary sedimentary as the youngest rocks. Based on sediment thickness, the thickest area was found on the Western (approx. 50 m) and the Northern (approx. 32 m). In line with the island’s Southern part condition, which was plain or shallow sea exposure, the Southeastern island sediment thickness ranged only about 10-18 m. Generally, based on the analyzed sediment sample, quartz was the main mineral found, which was 60-80% of the composition. Other minerals were zircon, tin, hematite, magnetite, limonite, biotite, and dolomite.</p>


2017 ◽  
Vol 110 (2) ◽  
pp. 021106 ◽  
Author(s):  
Fang Liu ◽  
Yaoyao Zhou ◽  
Juan Yu ◽  
Jiale Guo ◽  
Yang Wu ◽  
...  

1982 ◽  
Vol 12 (7) ◽  
pp. 827-832
Author(s):  
V P Kir'yanov ◽  
V P Koronkevich

Sign in / Sign up

Export Citation Format

Share Document