Balanced clustering multi-hop routing algorithm for LEACH protocol in wireless sensor networks

Author(s):  
Ran Zhou ◽  
Luyong Zhang ◽  
Fei Yang ◽  
Haipeng Yao ◽  
Zheng Zhou
2019 ◽  
Vol 25 ◽  
pp. 01011
Author(s):  
Junke Lv

Routing technology is one of the main supporting technologies of wireless sensor networks. Only by using routing algorithm reasonably or finding better routing optimization algorithm, can the function of wireless sensor networks be maximized. Therefore, the research of routing technology for wireless sensor networks has important theoretical and practical significance. Based on the analysis of existing routing protocols in wireless sensor networks, this paper focuses on LEACH protocol.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5206
Author(s):  
Mudathir F. S. Yagoub ◽  
Othman O. Khalifa ◽  
Abdelzahir Abdelmaboud ◽  
Valery Korotaev ◽  
Sergei A. Kozlov ◽  
...  

Wireless Sensor Networks (WSNs) have gained great significance from researchers and industry due to their wide applications. Energy and resource conservation challenges are facing the WSNs. Nevertheless, clustering techniques offer many solutions to address the WSN issues, such as energy efficiency, service redundancy, routing delay, scalability, and making WSNs more efficient. Unfortunately, the WSNs are still immature, and suffering in several aspects. This paper aims to solve some of the downsides in existing routing protocols for WSNs; a Lightweight and Efficient Dynamic Cluster Head Election routing protocol (LEDCHE-WSN) is proposed. The proposed routing algorithm comprises two integrated methods, electing the optimum cluster head, and organizing the re-clustering process dynamically. Furthermore, the proposed protocol improves on others present in the literature by combining the random and periodic electing method in the same round, and the random method starts first at the beginning of each round/cycle. Moreover, both random and periodic electing methods are preceded by checking the remaining power to skip the dead nodes and continue in the same way periodically with the rest of the nodes in the round. Additionally, the proposed protocol is distinguished by deleting dead nodes from the network topology list during the re-clustering process to address the black holes and routing delay problems. Finally, the proposed algorithm’s mathematical modeling and analysis are introduced. The experimental results reveal the proposed protocol outperforms the LEACH protocol by approximately 32% and the FBCFP protocol by 8%, in terms of power consumption and network lifetime. In terms of Mean Package Delay, LEDCHE-WSN improves the LEACH protocol by 42% and the FBCFP protocol by 15%, and regarding Loss Ratio, it improves the LEACH protocol by approximately 46% and FBCFP protocol by 25%.


Sign in / Sign up

Export Citation Format

Share Document