Simplified fault‐tolerant FIR filter architecture based on redundant residue number system

2014 ◽  
Vol 50 (23) ◽  
pp. 1768-1770 ◽  
Author(s):  
Zhibin Luan ◽  
Xiang Chen ◽  
Ning Ge ◽  
Zhaocheng Wang
2009 ◽  
Vol 22 (1) ◽  
pp. 125-140 ◽  
Author(s):  
Negovan Stamenkovic

In this paper, architecture of residue number system used in FIR filters, is presented. For many years residue number coding has been recognized as a system which provides capability for implementation of a high speed addition and multiplication. These advantages of residue number system coding for the high speed FIR filters design results from the fact that an digital FIR filter requires only addition and multiplication. The proposed FIR filter architecture is performed as series of modulo multiplication and accumulation across each modulo. A numerical example illustrates the principles of FIR filtering of an 32 order low pass filter. This architecture is compared with FIR filters direct synthesis. .


Author(s):  
Peter Awon-natemi Agbedemnab ◽  
Edward Yellakuor Baagyere ◽  
Mohammed Ibrahim Daabo

The possibility of errors being propagated during the encoding process of cryptographic and steganographic schemes is real due to the introduction of noise by ciphering the data from stage to stage. This real possibility therefore requires that an efficient scheme is proposed such that if after the decoding process the accurate information is not discovered, then it can be employed to detect and correct any errors in the system. The Residue Number System (RNS) by its nature is fault tolerant since an error in one digit position does not affect other digit positions; but the Redundant Residue Number System (RRNS) had been used over the years to effectively detect and correct errors. In this paper, we propose an efficient scheme that can detect and correct both single and multiple errors after and/or during computation and/or transmission provided the redundant moduli are sufficient enough. A theoretical analysis of the performance of the proposed scheme show it will be a better choice for detecting and correcting computational and transmission errors to existing similar state-of-the-art schemes.


2012 ◽  
Vol 9 (3) ◽  
pp. 325-342 ◽  
Author(s):  
Negovan Stamenkovic ◽  
Vladica Stojanovic

In this paper, the design of a Finite Impulse Response (FIR) filter based on the residue number system (RNS) is presented. We chose to implement it in the (RNS), because the RNS offers high speed and low power dissipation. This architecture is based on the single RNS multiplier-accumulator (MAC) unit. The three moduli set {2n+1,2n,2n-1}, which avoids 2n+1 modulus, is used to design FIR filter. A numerical example illustrates the principles of residue encoding, residue arithmetic, and residue decoding for FIR filters.


Sign in / Sign up

Export Citation Format

Share Document