The role of process simulation in the control system software life cycle

Author(s):  
A. Verwer
2020 ◽  
Vol 24 (4) ◽  
pp. 85-91
Author(s):  
Mariusz Pauluk

The paper presents the currently used techniques for the development of the automation control systems. It begins with the introduction of the concepts used in software engineering: software crisis, software disaster, and software life cycle. The subsequent chapters extend the latter by including the most popular software development models. Then, based on the V model, the role of verification and validation in the software and controller life cycle is presented, and the test techniques used in the controller validation are given. These test types include: software in the loop, processor in the loop, and controller in the loop. The last chapter describes the technique of designing automation systems based on the advanced mathematical models Model-Based Design.


Author(s):  
Petar Halachev ◽  
Victoria Radeva ◽  
Albena Nikiforova ◽  
Miglena Veneva

This report is dedicated to the role of the web site as an important tool for presenting business on the Internet. Classification of site types has been made in terms of their application in the business and the types of structures in their construction. The Models of the Life Cycle for designing business websites are analyzed and are outlined their strengths and weaknesses. The stages in the design, construction, commissioning, and maintenance of a business website are distinguished and the activities and requirements of each stage are specified.


Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


Kerntechnik ◽  
2009 ◽  
Vol 74 (5-6) ◽  
pp. 280-285
Author(s):  
M. Iqbal ◽  
J. Qadir ◽  
T. K. Bhatti ◽  
Q. Abbas ◽  
S. M. Mirza

Sign in / Sign up

Export Citation Format

Share Document