Validation of the MEGA finite element code

Author(s):  
N. Allen
2001 ◽  
Vol 32 (10-11) ◽  
pp. 759-767 ◽  
Author(s):  
B Patzák ◽  
Z Bittnar

2013 ◽  
Author(s):  
Robert Cimrman ◽  
Miroslav Tůma ◽  
Matyáš Novák ◽  
Ondřej Čertík ◽  
Jiří Plešek ◽  
...  

2006 ◽  
Vol 306-308 ◽  
pp. 1151-1156 ◽  
Author(s):  
Chong Du Cho ◽  
Heung Shik Lee ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

In this paper, a finite element code especially for micro-magnetostrictive actuators was developed. Two significant characteristics of the presented finite element code are: (1) the magnetostrictive hysteresis phenomenon is effectively taken into account; (2) intrinsic geometric feature of typical thin film structures of large length to thickness ratio, which makes it very difficult to construct finite element mesh in the region of the thin film, is considered reasonably in modeling micro-magneostrictive actuators. For verification purpose, magnetostrictive thin films were fabricated and tested in the form of a cantilevered actuator. The Tb-Fe film and Sm-Fe film are sputtered on the Si and Polyimide substrates individually. The magnetic and magnetostrictive properties of the sputtered magnetostrictive films are measured. The measured magnetostrictive coefficients are compared with the numerically calculated ones.


Author(s):  
Alireza Doosthoseini ◽  
Armaghan Salehian ◽  
Matthew Daly

In this paper we focus on a study which involves quantifying the effects of Macro Fiber Composite (MFC) actuators on the pattern and magnitude of wrinkles in a membrane when exposed to various loadings. An ABAQUS finite element code is employed for this research. The membrane in this study has a rectangular shape which is clamped at one edge and is free to move in the horizontal direction at the other edge. MFC actuators are bounded to the membrane to make a bimorph configuration.


Sign in / Sign up

Export Citation Format

Share Document