A ship detection method with model compression for optical remote sensing images

Author(s):  
D. Huang ◽  
J. Yu ◽  
M. Lei ◽  
F. Bi
2020 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Ting Nie ◽  
Xiyu Han ◽  
Bin He ◽  
Xiansheng Li ◽  
Hongxing Liu ◽  
...  

Ship detection in panchromatic optical remote sensing images is faced with two major challenges, locating candidate regions from complex backgrounds quickly and describing ships effectively to reduce false alarms. Here, a practical method was proposed to solve these issues. Firstly, we constructed a novel visual saliency detection method based on a hyper-complex Fourier transform of a quaternion to locate regions of interest (ROIs), which can improve the accuracy of the subsequent discrimination process for panchromatic images, compared with the phase spectrum quaternary Fourier transform (PQFT) method. In addition, the Gaussian filtering of different scales was performed on the transformed result to synthesize the best saliency map. An adaptive method based on GrabCut was then used for binary segmentation to extract candidate positions. With respect to the discrimination stage, a rotation-invariant modified local binary pattern (LBP) description was achieved by combining shape, texture, and moment invariant features to describe the ship targets more powerfully. Finally, the false alarms were eliminated through SVM training. The experimental results on panchromatic optical remote sensing images demonstrated that the presented saliency model under various indicators is superior, and the proposed ship detection method is accurate and fast with high robustness, based on detailed comparisons to existing efforts.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2271 ◽  
Author(s):  
Fukun Bi ◽  
Jinyuan Hou ◽  
Liang Chen ◽  
Zhihua Yang ◽  
Yanping Wang

Ship detection plays a significant role in military and civil fields. Although some state-of-the-art detection methods, based on convolutional neural networks (CNN) have certain advantages, they still cannot solve the challenge well, including the large size of images, complex scene structure, a large amount of false alarm interference, and inshore ships. This paper proposes a ship detection method from optical remote sensing images, based on visual attention enhanced network. To effectively reduce false alarm in non-ship area and improve the detection efficiency from remote sensing images, we developed a light-weight local candidate scene network( L 2 CSN) to extract the local candidate scenes with ships. Then, for the selected local candidate scenes, we propose a ship detection method, based on the visual attention DSOD(VA-DSOD). Here, to enhance the detection performance and positioning accuracy of inshore ships, we both extract semantic features, based on DSOD and embed a visual attention enhanced network in DSOD to extract the visual features. We test the detection method on a large number of typical remote sensing datasets, which consist of Google Earth images and GaoFen-2 images. We regard the state-of-the-art method [sliding window DSOD (SW+DSOD)] as a baseline, which achieves the average precision (AP) of 82.33%. The AP of the proposed method increases by 7.53%. The detection and location performance of our proposed method outperforms the baseline in complex remote sensing scenes.


2017 ◽  
Vol 12 ◽  
pp. 05012 ◽  
Author(s):  
Ying Liu ◽  
Hong-Yuan Cui ◽  
Zheng Kuang ◽  
Guo-Qing Li

2018 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Nan Wang ◽  
Bo Li ◽  
Qizhi Xu ◽  
Yonghua Wang

Automatic ship detection technology in optical remote sensing images has a wide range of applications in civilian and military fields. Among most important challenges encountered in ship detection, we focus on the following three selected ones: (a) ships with low contrast; (b) sea surface in complex situations; and (c) false alarm interference such as clouds and reefs. To overcome these challenges, this paper proposes coarse-to-fine ship detection strategies based on anomaly detection and spatial pyramid pooling pcanet (SPP-PCANet). The anomaly detection algorithm, based on the multivariate Gaussian distribution, regards a ship as an abnormal marine area, effectively extracting candidate regions of ships. Subsequently, we combine PCANet and spatial pyramid pooling to reduce the amount of false positives and improve the detection rate. Furthermore, the non-maximum suppression strategy is adopted to eliminate the overlapped frames on the same ship. To validate the effectiveness of the proposed method, GF-1 images and GF-2 images were utilized in the experiment, including the three scenarios mentioned above. Extensive experiments demonstrate that our method obtains superior performance in the case of complex sea background, and has a certain degree of robustness to external factors such as uneven illumination and low contrast on the GF-1 and GF-2 satellite image data.


Sign in / Sign up

Export Citation Format

Share Document