scholarly journals Multi-phase initial ranging process for OFDMA systems: improved dynamic threshold-based multi-user detection approach

2020 ◽  
Vol 14 (13) ◽  
pp. 2130-2140
Author(s):  
Kolihalli Narasaiah Naveen ◽  
Kenchappa Ramesha
Author(s):  
NADIA BOUASSIDA ◽  
HANENE BEN-ABDALLAH ◽  
IMENE ISSAOUI

Design patterns capitalize the knowledge of expert designers and offer reuse that provides for higher design quality and overall faster development. To attain these advantages, a designer must, however, overcome the difficulties in understanding design patterns and determining those appropriate for his/her particular application. On the other hand, one way to benefit from design patterns is to assist inexperienced designers in pattern detection during the design elaboration. Such detection should tolerate variations between the design and the pattern since the exact instantiation of a pattern is infrequent in a design. However, not all variations of a pattern are tolerated. In particular, some structural variations may result in non-optimal instantiations where the requirements are respected but the structure is different; such variations are called spoiled patterns and should also be detected and transformed into acceptable pattern instantiations. This paper first presents an improvement of our design/spoiled pattern detection approach, named MAPeD (Multi-phase Approach for Pattern Discovery). The latter uses an XML information retrieval technique to identify design/spoiled pattern occurrences in a design using, first, static and semantic information and, secondly, dynamic information. This multi-phase detection approach tolerates structural differences between the examined design and the identified design pattern. Furthermore, thanks to the matching information it collects, our identification technique can offer assistance for the improvement of a design. In its second contribution, this paper evaluates MAPeD by comparing its recall and precision rates for five open source systems: JHotDraw, JUnit, JRefactory, MapperXML, QuickUML. The latter were used by other approaches in experimental evaluations. Our evaluation shows that our design pattern identification approach has an average improvement of 9.98% in terms of precision over the best known approach.


Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


Sign in / Sign up

Export Citation Format

Share Document