Full-order sliding mode control for finite-time attitude tracking of rigid spacecraft

2018 ◽  
Vol 12 (8) ◽  
pp. 1086-1094 ◽  
Author(s):  
Zhuoyue Song ◽  
Chao Duan ◽  
Housheng Su ◽  
Jinchang Hu
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Chutiphon Pukdeboon

This paper investigates the robust finite-time control problem for flexible spacecraft attitude tracking maneuver in the presence of model uncertainties and external disturbances. Two robust attitude tracking controllers based on finite-time second-order sliding mode control algorithms are presented to solve this problem. For the first controller, a novel second-order sliding mode control scheme is developed to achieve high-precision tracking performance. For the second control law, an adaptive-gain second-order sliding mode control algorithm combing an adaptive law with second-order sliding mode control strategy is designed to relax the requirement of prior knowledge of the bound of the system uncertainties. The rigorous proofs show that the proposed controllers provide finite-time convergence of the attitude and angular velocity tracking errors. Numerical simulations on attitude tracking control are presented to demonstrate the performance of the developed controllers.


2021 ◽  
Vol 9 (11) ◽  
pp. 1204
Author(s):  
Yunfei Xiao ◽  
Yuan Feng ◽  
Tao Liu ◽  
Xiuping Yu ◽  
Xianfeng Wang

This study focuses on the problem of finite-time tracking control for underactuated surface vessels (USVs) through sliding-mode control algorithms with external disturbances. Considering the nonexistence of relative degree caused by the underactuated property, the initial tracking error system is firstly transformed to a high order system for the possibility of applying a sliding-mode control algorithm. Subsequently, a finite-time controller based on an integral sliding surface (ISMS) is designed to achieve trajectory tracking. With the aid of this controller, the tracking errors converge to a steady state in a finite time. In contrast to the backstepping-based approach, the proposed method makes it possible to integrate controller design of position tracking and attitude tracking in one step, thus ensuring simplicity for implementation. Finally, theoretical analysis and numerical simulations are conducted to confirm the effectiveness of the proposed method.


2020 ◽  
Vol 67 (10) ◽  
pp. 2084-2088
Author(s):  
Lei Wang ◽  
Zhuoyue Song ◽  
Xiangdong Liu ◽  
Zhen Li ◽  
Tyrone Fernando ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1333
Author(s):  
Sudipta Saha ◽  
Syed Muhammad Amrr ◽  
Abdelaziz Salah Saidi ◽  
Arunava Banerjee ◽  
M. Nabi

The active magnetic bearings (AMB) play an essential role in supporting the shaft of fast rotating machines and controlling the displacements in the rotors due to the deviation in the shaft. In this paper, an adaptive integral third-order sliding mode control (AITOSMC) is proposed. The controller suppresses the deviations in the rotor and rejects the system uncertainties and unknown disturbances present in the five DOF AMB system. The application of AITOSMC alleviates the problem of high-frequency switching called chattering, which would otherwise restrict the practical application of sliding mode control (SMC). Moreover, adaptive laws are also incorporated in the proposed approach for estimating the controller gains. Further, it also prevents the problem of overestimation and avoids the use of a priori assumption about the upper bound knowledge of total disturbance. The Lyapunov and homogeneity theories are exploited for the stability proof, which guarantees the finite-time convergence of closed-loop and output signals. The numerical analysis of the proposed strategy illustrates the effective performance. Furthermore, the comparative analysis with the existing control schemes demonstrates the efficacy of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document