scholarly journals Integral Sliding Mode Based Finite-Time Tracking Control for Underactuated Surface Vessels with External Disturbances

2021 ◽  
Vol 9 (11) ◽  
pp. 1204
Author(s):  
Yunfei Xiao ◽  
Yuan Feng ◽  
Tao Liu ◽  
Xiuping Yu ◽  
Xianfeng Wang

This study focuses on the problem of finite-time tracking control for underactuated surface vessels (USVs) through sliding-mode control algorithms with external disturbances. Considering the nonexistence of relative degree caused by the underactuated property, the initial tracking error system is firstly transformed to a high order system for the possibility of applying a sliding-mode control algorithm. Subsequently, a finite-time controller based on an integral sliding surface (ISMS) is designed to achieve trajectory tracking. With the aid of this controller, the tracking errors converge to a steady state in a finite time. In contrast to the backstepping-based approach, the proposed method makes it possible to integrate controller design of position tracking and attitude tracking in one step, thus ensuring simplicity for implementation. Finally, theoretical analysis and numerical simulations are conducted to confirm the effectiveness of the proposed method.

Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


Author(s):  
Bin Wang ◽  
Yangquan Chen ◽  
Ying Yang

Abstract This paper studies the chattering-free finite-time control for a class of fractional-order nonlinear systems. First, a class of fractional-order nonlinear systems with external disturbances is presented. Second, a new finite-time terminal sliding mode control method is proposed for the stability control of a class of fractional-order nonlinear systems by combining the finite-time stability theory and sliding mode control scheme. Third, by designing a controller with a differential form and introducing the arc tangent function, the chattering phenomenon is well suppressed. Additionally, a controller is developed to resist external disturbances. Finally, numerical simulations are implemented to demonstrate the feasibility and validity of the proposed method.


2017 ◽  
Vol 66 (2) ◽  
pp. 229-239 ◽  
Author(s):  
Abdelilah Chibani ◽  
Bachir Daaou ◽  
Abdelmadjid Gouichiche ◽  
Ahmed Safa ◽  
Youcef Messlem

AbstractIn this paper, an integral finite-time sliding mode control scheme is presented for controlling a chaotic permanent magnet synchronous motor (PMSM). The controller can stabilize the system output tracking error to zero in a finite time. Using Lyapunov’s stability theory, the stability of the proposed scheme is verified. Numerical simulation results are presented to present the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document