scholarly journals On model-based detectors for linear time-invariant stochastic systems under sensor attacks

2019 ◽  
Vol 13 (8) ◽  
pp. 1051-1061 ◽  
Author(s):  
Carlos Murguia ◽  
Justin Ruths
1996 ◽  
Vol 118 (2) ◽  
pp. 350-353 ◽  
Author(s):  
M. A. Hopkins ◽  
H. F. VanLandingham

This paper extends to multi-input multi-output (MIMO) systems a nonlinear method of simultaneous parameter and state estimation that appeared in the ASME JDSM&C (September, 1994), for single-input single-output (SISO) systems. The method is called pseudo-linear identification (PLID), and applies to stochastic linear time-invariant discrete-time systems. No assumptions are required about pole or zero locations; nor about relative degree, except that the system transfer functions must be strictly proper. In the earlier paper, proofs of optimality and convergence were given. Extensions of those proofs to the MIMO case are also given here.


1989 ◽  
Vol 111 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Y. Park ◽  
J. L. Stein

Model-based machine diagnostics techniques require the modeled states and machine inputs to be measured. Because measurement of all the states and inputs is not always possible or practical, a simultaneous state and input observer is required. Previous work has developed this type of acausal observer and shown it is susceptible to noise. This paper develops a steady-state optimal observer that minimizes the trace of the steady-state error covariance of the state and input estimates for discrete, linear, time-invariant, stochastic systems with unknown inputs. In addition, a method to distinguish the best measurement set among the available measurement sets is developed. Results from numerical simulations show that the optimal observer can greatly improve estimation results in some cases.


2021 ◽  
Vol 30 (1) ◽  
pp. 53-78
Author(s):  
Masood Ahmad ◽  
Rosmiwati Mohd-Mokhta

With the ongoing increase in complexity, less tolerance to performance degradation and safety requirements of practical systems has increased the necessity of fault detection (FD) as early as possible. During the last few decades, many research findings have been developed in fault diagnosis that addresses the issue of fault detection and isolation in linear and nonlinear systems. The paper’s objective is to present a survey on various state-of-art model-based FD techniques developed for linear time-invariant (LTI) systems for the interested readers to learn about recent development in this field. Model-based FD techniques for LTI systems are classified as parameter-estimation methods, parity-space-based methods, and observer-based methods. The background and recent progress, in context to fault detection, of each of these methods and their practical applications are discussed in this paper. Furthermore, two different FD techniques are compared via analytical equations and simulation results obtained from the DC motor model. In the end, possible future research directions in model-based FD, particularly for the LTI system, are highlighted for prosperous researchers. A comparison and emerging research topic make this contribution different from the existing survey papers on FD.


Sign in / Sign up

Export Citation Format

Share Document