Simple model for the parametric analysis of grid amplifiers

2009 ◽  
Vol 3 (5) ◽  
pp. 877
Author(s):  
I. Russo ◽  
L. Boccia ◽  
G. Amendola ◽  
G. Di Massa ◽  
P.S. Hall
Author(s):  
I. Russo ◽  
L. Boccia ◽  
G. Amendola ◽  
G. Di Massa

2012 ◽  
Vol 192 ◽  
pp. 207-210
Author(s):  
Bing Zhang

This paper, in perspective of biomechanics, analyzes tug-of-war, on condition of maximum friction and stable rope, and achieves the sequence which can exert maximum energy. The key to exert maximum energy is to achieve maximum friction. Firstly, build an ideal and simple model, with mechanical analysis, and get that point. Secondly, analyze the maximum pressure and conduct force analysis of rope, with a conclusion that if the sequence is arrayed from short to tall and only when the heights are the same, the athletes with greater weight should stand behind.


2021 ◽  
Author(s):  
Nicholas E Bishop ◽  
Phil Wright ◽  
Martin Preutenborbeck

Abstract BackgroundPress-fitted implants are implanted by impaction to ensure adequate seating, but without overloading the components, the surgeon, or the patient. To understand this interrelationship a uniaxial discretised model of the hammer/introducer/implant/bone/soft-tissues was developed. A parametric analysis of applied energy, component materials and geometry, and interaction between implant-bone and bone-soft-tissue was performed, with implant seating and component stresses as outcome variables. ResultsTo reduce stresses without compromising seating, the following outcomes were observed: Less energy per hit with more hits / Increase hammer mass / Decrease introducer mass / Increase implant-bone resistance (eg stem roughness). Material stiffness and patient mechanics were found to be less important.ConclusionsThis simple model provides a basic understanding of how stress waves travel through the impacted system, and an understanding of their relevance to component design.


2012 ◽  
Author(s):  
Alexander Medvinsky ◽  
Alexey Rusakov
Keyword(s):  

2011 ◽  
Author(s):  
Riley E. Splittstoesser ◽  
Greg G. Knapik ◽  
William S. Marras
Keyword(s):  

1976 ◽  
Vol 37 (2) ◽  
pp. 149-158 ◽  
Author(s):  
A.K. Bhattacharjee ◽  
B. Caroli ◽  
D. Saint-James
Keyword(s):  

1980 ◽  
Vol 19 (01) ◽  
pp. 11-15
Author(s):  
G. Roncari ◽  
L. Rapisardi ◽  
L. Conte ◽  
G. Pedroli

A simple model for the study of bone calcium metabolism is proposed. It describes the kinetics of a radioactive tracer in terms of an open single compartment system with an expanding volume for a finite period of time. In addition to the simplicity of the hypotheses introduced, the model is able to give a good description of the biological processes which regulate calcium kinetics. Moreover the functional parameters can be easily calculated, even just graphically. 15 normal subjects and 22 patients affected by various bone diseases were studied. The results were compared with those obtained by using the model proposed by Burkinshaw et al. and the method described by Reeve et al.


2003 ◽  
Vol 777 ◽  
Author(s):  
J.S. Romero ◽  
A.G. Fitzgerald

AbstractCopper migration is observed in the SEM in amorphous GeSe2/Cu thin films when an electron beam is focused in pulsed or continuous operation on the surface of these thin films. The phenomenon can be explained using a simple model in which the population of D- centers is considered to increase upon electron irradiation. The increase in the D- center population is envisaged as due to the breaking of bonds by the electron radiation and by the constant presence of negative charge in irradiated regions. Changes in copper concentration of 20%-30% have been obtained. Additionally we have observed the local crystallization of amorphous GeSe2/Cu thin films in the TEM when the samples were subjected to intense electron bombardment. The crystalline product has been identified as Berzelianite (Cu2Se).


Sign in / Sign up

Export Citation Format

Share Document