mass increase
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 57)

H-INDEX

22
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 639
Author(s):  
Milan Kouřil ◽  
Tereza Boháčková ◽  
Kristýna Charlotte Strachotová ◽  
Jan Švadlena ◽  
Tomáš Prošek ◽  
...  

Sixteen localities were involved in a broad study, resulting in the classification of the indoor corrosivity of metals considered in the ISO 11844 standard, especially lead. Recently, lead has been added to the standard as a metal specifically sensitive to volatile organic compounds such as acetic acid. Data on one-year exposure in museum depositories and exhibition spaces, archives, libraries, and churches show that the currently valid lead corrosivity categories are not correctly defined. The obtained data allowed for the proposal of new realistic ranges of indoor corrosivity categories for lead. The exposure program was also used to validate techniques for determining the corrosion degradation of metal coupons. Mass increase and mass loss techniques were supplemented with the galvanostatic reduction technique and the measurement of color changes. The study identified the limitations of the mass gain method. Not only is the galvanostatic reduction technique applicable for silver and copper coupons, but the build-up of reducible lead corrosion products depends on air corrosivity. CIELab color-change measurement has proven to be a simple and easy-to-apply method for monitoring the corrosivity of indoor atmospheres with regard to lead. A more reliable response is provided by the determination of color change after 3 months of exposure rather than after one year.


Cellulose ◽  
2021 ◽  
Author(s):  
Laura Resch ◽  
Anna Karner ◽  
Wolfgang Sprengel ◽  
Roland Würschum ◽  
Robert Schennach

AbstractIn this study, for the first time, the experimental technique of positron annihilation lifetime spectroscopy (PALS) has been applied to monitor in situ the microstructural changes of cellulose-based materials, i.e. paper, during water intake. For three different cellulose samples, bleached fine paper without filler, Kraft paper without filler, and a viscose fiber sheet, the mean positron lifetime $$\Delta \tau _{\mathrm {mean}}$$ Δ τ mean showed a strong increase with time in humid atmosphere, but exhibiting different trends depending on the type of sample. For all the cellulose samples investigated, the mean positron lifetime $$\Delta \tau _{\mathrm {mean}}$$ Δ τ mean shows an initial strong increase simultaneously occurring (t<10 h) to the mass increase of the samples due to water intake. Interestingly, the variations of $$\Delta \tau _{\mathrm {mean}}$$ Δ τ mean of the viscose fiber sheet and the Kraft paper sample both show a second increase on longer timescales (t>60 h in humid atmosphere) during which the mass increase of these samples has already been saturated. The results of this study show that by the means of PALS, water transport in paper can be reliably followed over a long timespan and it is even possible to distinguish between different types of cellulose materials. The second stage increase of the mean positron lifetime after long times in humid atmosphere for the Kraft paper sample and the pure viscose sheets even suggest that not only water intake itself can be monitored but also further atomistic processes in the material are accessible.


2021 ◽  
Vol 52 (6) ◽  
pp. 1334-1345
Author(s):  
V. I. Lopushniak ◽  
H. M. Hrytsuliak

This study was aimed to investigate  the ability of Jerusalem artichokes (Helianthus tuberous L.) to absorb heavy metals in an oil-contaminated ecosystem.  The research was carried out in a  territory of the oil and gas pipeline  at the village of  Bytkiv of Nadvirna district.  Jerusalem artichokes were used for this study and planted on an area of 25 m2.  The area of the experimental field in the village of  Maidan of Tysmenytsia district (control option № 1).  A total of eight treatments of the experiment with different rates of sewage sludge.  It is established that the concentration of heavy metals in oil-contaminated soil and Jerusalem artichoke plants increases with increasing the amount of fertilizers in the soil. The maximum content of metals in the tested soils, green mass and Jerusalem artichoke roots was observed  mainly in the variant of sewage sludge application at the rate of 40 t/ha and fertilizer N10P14K58.The green mass and roots of Jerusalem artichoke exhibited the highest content  of heavy metals absorption the transition coefficients of metals in the system "roots - green mass" increase in the following : Pb → Co → Ni → Cd.  The coefficients of biological absorption of metals by Jerusalem artichoke increase in a number of elements: Co  → Ni → Ld → Ca. Where as  The coefficients of biological accumulation of heavy metals with Jerusalem artichoke increase in a number of elements following series : L → Co → Ni → Ca. It is recommended to use Jerusalem artichoke as a phytoremediator of man-made areas.


2021 ◽  
Vol 6 (5) ◽  
pp. 1325-1340
Author(s):  
Helena Canet ◽  
Stefan Loew ◽  
Carlo L. Bottasso

Abstract. This paper explores the potential benefits brought by the integration of lidar-assisted control (LAC) in the design of a wind turbine. The study identifies which design drivers can be relaxed by LAC, as well as by how much these drivers could be reduced before other conditions become the drivers. A generic LAC load-reduction model is defined and used to redesign the rotor and tower of three representative turbines, differing in terms of wind class, size, and power rating. The load reductions enabled by LAC are used to save mass, increase hub height, or extend lifetime. For the first two strategies, results suggest only modest reductions in the levelized cost of energy, with potential benefits essentially limited to the tower of a large offshore machine. On the other hand, lifetime extension appears to be the most effective way of exploiting the effects of LAC.


2021 ◽  
Author(s):  
Nicholas E Bishop ◽  
Phil Wright ◽  
Martin Preutenborbeck

Abstract BackgroundPress-fitted implants are implanted by impaction to ensure adequate seating, but without overloading the components, the surgeon, or the patient. To understand this interrelationship a uniaxial discretised model of the hammer/introducer/implant/bone/soft-tissues was developed. A parametric analysis of applied energy, component materials and geometry, and interaction between implant-bone and bone-soft-tissue was performed, with implant seating and component stresses as outcome variables. ResultsTo reduce stresses without compromising seating, the following outcomes were observed: Less energy per hit with more hits / Increase hammer mass / Decrease introducer mass / Increase implant-bone resistance (eg stem roughness). Material stiffness and patient mechanics were found to be less important.ConclusionsThis simple model provides a basic understanding of how stress waves travel through the impacted system, and an understanding of their relevance to component design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
László Oláh ◽  
Hiroyuki K. M. Tanaka ◽  
Gergő Hamar

AbstractPost-eruptive destabilization of volcanic edifices by gravity driven debris flows or erosion can catastrophically impact the landscapes, economies and human societies surrounding active volcanoes. In this work, we propose cosmic-ray muon imaging (muography) as a tool for the remote monitoring of hydrogeomorphic responses to volcano landscape disturbances. We conducted the muographic monitoring of Sakurajima volcano, Kyushu, Japan and measured continuous post-eruptive activity with over 30 lahars per year. The sensitive surface area of the Multi-Wire-Proportional-Chamber-based Muography Observation System was upgraded to 7.67 m$$^2$$ 2 ; this made it possible for the density of tephra within the crater region to be measured in 40 days. We observed the muon flux decrease from 10 to 40% through the different regions of the crater from September 2019 to October 2020 due to the continuous deposition of tephra fallouts. In spite of the long-term mass increase, significant mass decreases were also observed after the onsets of rain-triggered lahars that induced the erosion of sedimented tephra. The first muographic observation of these post-eruptive phenomena demonstrate that this passive imaging technique has the potential to contribute to the assessment of indirect volcanic hazards.


2021 ◽  
Vol 11 (17) ◽  
pp. 8261
Author(s):  
Petru Cardei ◽  
Florin Nenciu ◽  
Nicoleta Ungureanu ◽  
Mirabela Augustina Pruteanu ◽  
Valentin Vlăduț ◽  
...  

The aim of the study was to identify new mathematical models and strategies that can characterize the behavior of pollutants accumulating in the soil over time, considering the special characteristics of these chemicals that cannot be degraded or destroyed easily. The paper proposes a statistical model for assessing the accumulation of Zn in the lettuce (Lactuca sativa L.), based on three indicators that characterize the development of lettuce plants over time. The experimental data can be used to obtain interpolated variations of the mass increase functions and to determine several functions that express the time dependence of heavy metal accumulation in the plant. The resulting interpolation functions have multiple applications, being useful in generating predictions for plant growth parameters when they are grown in contaminated environments, determining whether pollutant concentrations may be hazardous for human health, and may be used to verify and validate dynamic mathematical contamination models.


2021 ◽  
Author(s):  
László Oláh ◽  
Hiroyuki K. M. Tanaka ◽  
Gergő Hamar

Abstract Post-eruptive destabilization of volcanic edifices by gravity driven debris flows or erosion can catastrophically impact the landscapes, economies and human societies surrounding active volcanoes. In this work, we propose muography as a tool for the remote monitoring of hydrogeomorphic responses to volcano landscape disturbances. We conducted the muographic monitoring of Sakurajima volcano, Kyushu, Japan and measured continuous post-eruptive activity with over 30 lahars per year. The sensitive surface area of the Multi-Wire-Proportional-Chamber-based Muography Observation System was upgraded to 7.67 m2 ; this made it possible for the density of tephra within the crater region to be measured in 40 days. We observed the muon flux decrease from 10 % to 40 % through the different regions of the crater from September 2019 to October 2020 due to the continuous deposition of tephra fallouts. In spite of the long-term mass increase, significant mass decreases were also observed after the onsets of rain-triggered lahars that induced the erosion of sedimented tephra. The first muographic observation of these post-eruptive phenomena demonstrate that this passive imaging technique has the potential to contribute to the assessment of indirect volcanic hazards.


Sign in / Sign up

Export Citation Format

Share Document