Design of reconfigurable active integrated microstrip antenna with switchable low‐noise amplifier/power amplifier performances for wireless local area network and WiMAX applications

2015 ◽  
Vol 9 (9) ◽  
pp. 872-881 ◽  
Author(s):  
Arash Valizade ◽  
Pejman Rezaei ◽  
Ali Asghar Orouji
2012 ◽  
Vol 605-607 ◽  
pp. 2057-2061
Author(s):  
Xin Yin ◽  
Yi Yao ◽  
Jin Ling Jia

This paper studies a low noise amplifier design method for 5.8G wireless local area network. Using the software of designing RF circuit ADS(Advanced Design System) and Avago Technologies’s ATF-36077,we designed a three-cascade LNA. In 5.725G~5.85GHz range, noise figure less than 0.5dB, more than 30dB gain, input and output standing wave ratio less than 1.3dB.The LNA meet the design requirements.


2013 ◽  
Vol 380-384 ◽  
pp. 3287-3291
Author(s):  
Bing Liang Yu ◽  
Xiao Ning Xie ◽  
Wen Yuan Li

A fully integrated low noise amplifier (LNA) for wireless local area network (WLAN) application is presents. The circuit is fabricated in 0.18μm SiGe BiCMOS technology. For the low noise figure, a feedback path is introduced into the traditional inductively degenerated common emitter cascade LNA, which decreases the inductance for input impedance matching, therefore reduces the thermal noise caused by loss resistor. Impedance matching and noise matching are achieved at the same time. Measured results show that the resonance point of the output resonance network shifts from 2.4GHz to 2.8GHz, due to the parasitic effects at the output. At the frequency of 2.8GHz, the LNA achieves 2.2dB noise figure, 19.4dB power gain. The core circuit consumes only 13mW from a 1.8V supply and occupies less than 0.5mm2.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


2019 ◽  
Vol 11 (5-6) ◽  
pp. 523-531 ◽  
Author(s):  
Geetanjali Singla ◽  
Rajesh Khanna ◽  
Davinder Parkash

AbstractThe spectral congestion in existing Industrial, Scientific, and Medical (ISM) Wireless Local Area Network (WLAN) bands has led to the emergence of new ISM bands (Unlicensed National Information Infrastructure (UNII)) from 5.150 to 5.710 GHz. In this paper, a simple uniplanar, high gain, microstrip antenna is designed, fabricated, and tested for existing WLAN and new UNII standards. The proposed antenna provides dualband operation by joining two rectangular rings and cutting Defected Ground Structure in the Coplanar Wave Guide (CPW) feed. The experimental and simulation results show good return loss characteristics and stable radiation pattern over the desired frequency bands ranging from 2.20 to 2.65 GHz (WLAN band) at a lower frequency and from 5.0 to 5.45 GHz (UNII-1/UNII-2 bands). The measured peak gains are 5.5 and 4.9 dBi at 2.45 GHz (WLAN band) and 5.15 GHz (UNII band), respectively.


Author(s):  
Sotyohadi Sotyohadi ◽  
I Komang Somawirata ◽  
Kartiko Ardi Widodo ◽  
Son Thanh Phung ◽  
Ivar Zekker

This paper presents a linear 1 × 2 “Ha ( )”–slot patch array microstrip antenna. The proposed design of an array microstrip antenna is intended for Wireless Local Area Network (WLAN) 2.4 GHz devices. From the previous research concerning the single patch “Ha ( )”–slot microstrip antenna, the gain that can be achieved is 5.77 dBi in simulation. This value is considered too small for an antenna to accommodate WLAN devices if compare to a Hertzian antenna. To enhance the gain of microstrip antenna, some methods can be considered using linear 1 × 2 patch array and T-Junction power divider circuit to have matching antenna impedance. The distances between two patches are one of the important steps to be considered in designing the patch array microstrip antenna. Thus, the minimum distance between the patch elements are calculated should be greater than λ/2 of the resonance frequency antenna. If the distance less than λ/2 electromagnetically coupled will occur, vice versa when it is to widen the dimension of the antenna will less efficient. Epoxy substrate Flame Resistant 4 (FR4) with dielectric constant 4.3 is used as the platform designed for the array antenna and it is analyzed using simulation software Computational Simulation Technology (CST) studio suite by which return loss, Voltage Standing Wave Ratio (VSWR), and gain are calculated. The simulation result showed that the designed antenna achieve return loss (S11) -25.363 dB with VSWR 1.1 at the frequency 2.4 GHz, and the gain obtained from simulation is 8.96 dBi, which is greater than 64.4 % if compared to the previous one. The proposed antenna design shows that increasing the number of patches in the array can technically improve the gain of a microstrip antenna, which can cover a wider area if applied to WLAN devices


Sign in / Sign up

Export Citation Format

Share Document