Ultra-flattened dispersion hexagonal photonic crystal fibre with low confinement loss and large effective area

2012 ◽  
Vol 6 (2) ◽  
pp. 82 ◽  
Author(s):  
S. Olyaee ◽  
F. Taghipour
2003 ◽  
Vol 39 (10) ◽  
pp. 796 ◽  
Author(s):  
B. Zsigri ◽  
C. Peucheret ◽  
M.D. Nielsen ◽  
P. Jeppesen

2003 ◽  
Vol 39 (25) ◽  
pp. 1802 ◽  
Author(s):  
M.D. Nielsen ◽  
J.R. Folkenberg ◽  
N.A. Mortensen

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Patrick Atsu Agbemabiese ◽  
Emmanuel Kofi Akowuah

AbstractA four-ring microstructure photonic crystal fibre with a descending air hole ring cladding is presented. Numerical analysis of the structure is done using full vectorial finite element method with perfectly matched layer (PML) boundary condition. It is demonstrated that it is possible to achieve at 1.55 µm confinement loss of 2.767 × 10−5 dB/m, birefringence of 0.00346 and a nonlinear co-efficient of 41.77 km−1 W−1. Also, chromatic dispersion realised suggests a tuneable zero dispersion at 0.9–1.1 µm wavelength range.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Foued Amrani ◽  
Jonas H. Osório ◽  
Frédéric Delahaye ◽  
Fabio Giovanardi ◽  
Luca Vincetti ◽  
...  

AbstractRemarkable recent demonstrations of ultra-low-loss inhibited-coupling (IC) hollow-core photonic-crystal fibres (HCPCFs) established them as serious candidates for next-generation long-haul fibre optics systems. A hindrance to this prospect and also to short-haul applications such as micromachining, where stable and high-quality beam delivery is needed, is the difficulty in designing and fabricating an IC-guiding fibre that combines ultra-low loss, truly robust single-modeness, and polarisation-maintaining operation. The design solutions proposed to date require a trade-off between low loss and truly single-modeness. Here, we propose a novel IC-HCPCF for achieving low-loss and effective single-mode operation. The fibre is endowed with a hybrid cladding composed of a Kagome-tubular lattice (HKT). This new concept of a microstructured cladding allows us to significantly reduce the confinement loss and, at the same time, preserve truly robust single-mode operation. Experimental results show an HKT-IC-HCPCF with a minimum loss of 1.6 dB/km at 1050 nm and a higher-order mode extinction ratio as high as 47.0 dB for a 10 m long fibre. The robustness of the fibre single-modeness is tested by moving the fibre and varying the coupling conditions. The design proposed herein opens a new route for the development of HCPCFs that combine robust ultra-low-loss transmission and single-mode beam delivery and provides new insight into IC guidance.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


Sign in / Sign up

Export Citation Format

Share Document