scholarly journals Experimental investigation of an optimised pitch control for a vertical‐axis turbine

2019 ◽  
Vol 13 (16) ◽  
pp. 3106-3112 ◽  
Author(s):  
Shokoofeh Abbaszadeh ◽  
Stefan Hoerner ◽  
Thierry Maître ◽  
Roberto Leidhold
Author(s):  
Tomoki Ikoma ◽  
Hiroaki Eto ◽  
Koichi Masuda ◽  
Atsuhiro Oguchi

Sea areas around the Japanese Islands which is feasible for tidal current generation are not a lot because sea sites where tidal current velocity is above 2.0 m/s are a few. We can find such sea sites at a west side of the Kyushu Island especially. However, we would earn electrical energy to be generated if it is able to generate electricity long time using around 1.0 m/s in current velocity. A vertical axis turbine should be better than horizontal axis types because VATs can take relatively higher torque. It is very useful that we can set and control a marine turbine to be higher performance in various current velocity. The present study introduce variable pitch-control system to a vertical axis turbine for tidal current generation. The pitch-control system adapts a cycloidal mechanism so that to vary pitch angle of turbine blades is conducted mechanically. The study developed a vertical axis marine turbine with cycloidal pitch-controlled three blades which was based on previous studies and experimental data. The diameter of the turbine is 1.0 m, length of a blade is 1.3 m. The turbine was set on a floating structure in order to carry out towing tests at a sea. We obtained several kinds of data from the towing tests, which were turbine torque, the number of rotation of the turbine, output power from an electrical generator and acceleration of the floating structure. As a result, the turbine made 50 W power from the generator. Although the PTO was not so large, the pitch-control was effective very much. Some issues were found at the same time. We need to consider and develop more useful gears, assemble methods to be feasible of variable pitch system.


2016 ◽  
Vol 179 ◽  
pp. 875-887 ◽  
Author(s):  
Min-Hsiung Yang ◽  
Guan-Ming Huang ◽  
Rong-Hua Yeh

2020 ◽  
Vol 2020 (0) ◽  
pp. OS09-12
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shinichi MORITA ◽  
Shigeru OHTSUKA ◽  
...  

2021 ◽  
Vol 2021.59 (0) ◽  
pp. 07a5
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shigeru OHTSUKA ◽  
Shinichi MORITA ◽  
...  

2021 ◽  
Vol 247 ◽  
pp. 114768
Author(s):  
Stephanie Müller ◽  
Valentine Muhawenimana ◽  
Catherine A.M.E. Wilson ◽  
Pablo Ouro

2019 ◽  
pp. 29-55
Author(s):  
Grady Koch ◽  
Elias Koch

Author(s):  
Ebert Vlasveld ◽  
Fons Huijs ◽  
Feike Savenije ◽  
Benoît Paillard

A vertical axis wind turbine (VAWT) typically has a low position of the center of gravity and a large allowable tilt angle, which could allow for a relatively small floating support structure. Normally however, the drawback of large loads on the VAWT rotor during parked survival conditions limits the extent to which the floater size can be reduced. If active blade pitch control is applied to the VAWT, this drawback can be mitigated and the benefits can be fully utilized. The coupled dynamics of a 6 MW VAWT with active blade pitch control supported by a GustoMSC Tri-Floater semi-submersible floater have been simulated using coupled aero-hydro-servo-elastic software. The applied blade pitch control during power production results in a steady-state thrust curve which is more comparable to a HAWT, with the maximum thrust occurring at rated wind velocity. During power production, floater motions occur predominantly at low frequencies. These low frequency motions are caused by variations in the wind velocity and consequently the rotor thrust and torque. For the parked survival condition, it is illustrated that active blade pitch control can be used to effectively reduce dynamic load variations on the rotor and minimize floater motions and mooring line tensions.


2013 ◽  
Vol 47 (4) ◽  
pp. 36-44 ◽  
Author(s):  
Prasun Chatterjee ◽  
Raymond N. Laoulache

AbstractVertical axis turbines (VATs) excel over horizontal axis turbines in their independent flow direction. VATs that operate in an enclosure, e.g., a diffuser shroud, are reported to generate more power than unducted VATs. A diffuser-shrouded, high solidity of 36.67%, three-blade VAT with NACA 633-018 airfoil section is modeled in 2-D using the commercial software ANSYS-FLUENT®. Incompressible, unsteady, segregated, implicit, and second order in time and space solver is implemented in association with the Spalart-Allmaras turbulent model with a reasonable computational cost. The computational results are assessed against experimental data for unducted VAT at low tip speed ratios between 1 and 2 for further numerical analysis on diffuser models. Different diffuser designs are investigated using suitable nozzle size, area ratio, length-to-diameter ratio and angles between the diffuser inner surfaces. The numerical model shows that, for a specific diffuser design, the ducted VAT performance coefficient can be augmented by almost 90% over its unducted counterpart.


Sign in / Sign up

Export Citation Format

Share Document