scholarly journals Joint estimation of direction of departure and direction of arrival for multiple‐input multiple‐output radar based on improved joint ESPRIT method

2015 ◽  
Vol 9 (3) ◽  
pp. 308-317 ◽  
Author(s):  
Daegun Oh ◽  
Ying‐chun Li ◽  
Jasurbek Khodjaev ◽  
Jong‐Wha Chong ◽  
Jong‐Hun Lee
2014 ◽  
Vol 513-517 ◽  
pp. 3850-3854
Author(s):  
Jian Feng Li ◽  
Wei Yang Chen ◽  
Xiao Fei Zhang

Without using non-circular signals, conjugate estimation of signal parameters via rotational invariance technique (ESPRIT) for joint estimation of direction of departure (DOD) and direction of arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar is proposed. The characteristics of the Vandermonde-like matrix are employed to expand the virtual array of MIMO radar. Then the rotational invariance in the signal subspace is exploited to get the automatically paired estimations of angles. The proposed algorithm works with the same data model as that of ESPRIT, and has better angle estimation performance and can detect more targets than ESPRIT. Simulation results verify the usefulness of our approach.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 193 ◽  
Author(s):  
Zhimin Chen ◽  
Xinyi He ◽  
Zhenxin Cao ◽  
Yi Jin ◽  
Jingchao Li

The existing positioning methods for the automatic guided vehicle (AGV) in the port can not achieve high location precision, Therefore, a novel multiple input multiple output (MIMO) antenna radar positioning scheme is proposed in this paper. The positioning problem for AGV is considered, and the joint estimation problem for direction of departure (DoD) and direction of arrival (DoA) is addressed in the multiple-input multiple-output (MIMO) radar system. With the radar detect the transponder and estimate the DoA/DoD, the relative location between the transponder and the AGV can be obtained. The corresponding Cramér–Rao lower bounds (CRLBs) for the target parameters are also derived theoretically. Finally, we compare the positioning accuracy of the traditional global position system (GPS) with the proposed MIMO radar system. Simulation results show that the proposed method can achieve better performance than the traditional GPS.


2021 ◽  
Vol 13 (15) ◽  
pp. 2964
Author(s):  
Fangqing Wen ◽  
Junpeng Shi ◽  
Xinhai Wang ◽  
Lin Wang

Ideal transmitting and receiving (Tx/Rx) array response is always desirable in multiple-input multiple-output (MIMO) radar. In practice, nevertheless, Tx/Rx arrays may be susceptible to unknown gain-phase errors (GPE) and yield seriously decreased positioning accuracy. This paper focuses on the direction-of-departure (DOD) and direction-of-arrival (DOA) problem in bistatic MIMO radar with unknown gain-phase errors (GPE). A novel parallel factor (PARAFAC) estimator is proposed. The factor matrices containing DOD and DOA are firstly obtained via PARAFAC decomposition. One DOD-DOA pair estimation is then accomplished from the spectrum searching. Thereafter, the remainder DOD and DOA are achieved by the least squares technique with the previous estimated angle pair. The proposed estimator is analyzed in detail. It only requires one instrumental Tx/Rx sensor, and it outperforms the state-of-the-art algorithms. Numerical simulations verify the theoretical advantages.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Dang Xiaofang ◽  
Chen Baixiao ◽  
Yang Minglei ◽  
Zheng Guimei

The beamspace unitary ESPRIT (B-UESPRIT) algorithm for estimating the joint direction of arrival (DOA) and the direction of departure (DOD) in bistatic multiple-input multiple-output (MIMO) radar is proposed. The conjugate centrosymmetrized DFT matrix is utilized to retain the rotational invariance structure in the beamspace transformation for both the receiving array and the transmitting array. Then the real-valued unitary ESPRIT algorithm is used to estimate DODs and DOAs which have been paired automatically. The proposed algorithm does not require peak searching, presents low complexity, and provides a significant better performance compared to some existing methods, such as the element-space ESPRIT (E-ESPRIT) algorithm and the beamspace ESPRIT (B-ESPRIT) algorithm for bistatic MIMO radar. Simulation results are conducted to show these conclusions.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yucai Pang ◽  
Song Liu ◽  
Yun He

Larger array aperture is provided by sparse arrays than uniform ones, which can improve the angle estimation resolution and reduce the cost of system evidently. However, manifold ambiguity is introduced due to the array sparsity. In this paper, a Power Estimation Multiple-Signal Classification (PE-MUSIC) algorithm is proposed to solve the manifold ambiguity of arbitrary sparse arrays for uncorrelated sources in Multiple-Input Multiple-Output (MIMO) radar. First, the paired direction of departure (DOD) and direction of arrival (DOA) are obtained for all targets by MUSIC algorithm, including the true and spurious ones; then, the well-known Davidon–Fletcher–Powell (DFP) algorithm is applied to estimate all targets’ power values, among which the value of a spurious target trends to zero. Therefore, the ambiguity of sparse array in MIMO radar can be cleared. Simulation results verify the effectiveness and feasibility of the method.


Sign in / Sign up

Export Citation Format

Share Document