scholarly journals High‐sensitivity synchronous image encryption based on improved one‐dimensional compound sine map

2021 ◽  
Author(s):  
Xingyuan Wang ◽  
Maozhen Zhang
Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 171 ◽  
Author(s):  
Yujie Wan ◽  
Shuangquan Gu ◽  
Baoxiang Du

In order to obtain chaos with a wider chaotic scope and better chaotic behavior, this paper combines the several existing one-dimensional chaos and forms a new one-dimensional chaotic map by using a modular operation which is named by LLS system and abbreviated as LLSS. To get a better encryption effect, a new image encryption method based on double chaos and DNA coding technology is proposed in this paper. A new one-dimensional chaotic map is combined with a hyperchaotic Qi system to encrypt by using DNA coding. The first stage involves three rounds of scrambling; a diffusion algorithm is applied to the plaintext image, and then the intermediate ciphertext image is partitioned. The final encrypted image is formed by using DNA operation. Experimental simulation and security analysis show that this algorithm increases the key space, has high sensitivity, and can resist several common attacks. At the same time, the algorithm in this paper can reduce the correlation between adjacent pixels, making it close to 0, and increase the information entropy, making it close to the ideal value and achieving a good encryption effect.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 456
Author(s):  
Xitong Xu ◽  
Shengbo Chen

Image encryption is a confidential strategy to keep the information in digital images from being leaked. Due to excellent chaotic dynamic behavior, self-feedbacked Hopfield networks have been used to design image ciphers. However, Self-feedbacked Hopfield networks have complex structures, large computational amount and fixed parameters; these properties limit the application of them. In this paper, a single neuronal dynamical system in self-feedbacked Hopfield network is unveiled. The discrete form of single neuronal dynamical system is derived from a self-feedbacked Hopfield network. Chaotic performance evaluation indicates that the system has good complexity, high sensitivity, and a large chaotic parameter range. The system is also incorporated into a framework to improve its chaotic performance. The result shows the system is well adapted to this type of framework, which means that there is a lot of room for improvement in the system. To investigate its applications in image encryption, an image encryption scheme is then designed. Simulation results and security analysis indicate that the proposed scheme is highly resistant to various attacks and competitive with some exiting schemes.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950084 ◽  
Author(s):  
Jilong Wang ◽  
Siheng Su ◽  
Jingjing Qiu ◽  
Shiren Wang

In this paper, a novel and facile method to achieve fluorescent nanosized-diamond based nanowire (NW) is reported. One-dimensional (1D) organic NW has received tremendous attention due to its superior chemical functionality and size-, shape-, and material-dependent properties. In addition, nanosized-diamond is comprehensively studied and investigated due to superior tunable fluorescent properties, cost-effectiveness, facile manufacturing and high biocompatibility. Through thermal treatment, sulfur-modified nanosized-diamond was fabricated by mixing oxidized nanosized-diamond and dibenzyl disulfide at 900∘C. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and zeta potential were employed to characterize sulfur-modified nanosized-diamond. After that, porous anodic aluminum oxide template-assisted cathodic electrophoretic deposition method was used to achieve sulfur-modified nanosized-diamond NW. Scanning electron microscopy and transmission electron microscopy were applied to present the one-dimensional structure of the NWs. The optical properties of sulfur nanosized-diamond NW were characterized via ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Finally, the as-synthesized sulfur-modified nanosized-diamond NW-based optical sensor was fabricated to detect vitamin B[Formula: see text] with high sensitivity and selectivity.


2021 ◽  
Author(s):  
Ahmed Mehaney ◽  
Hussein A. Elsayed ◽  
Ashour M. Ahmed

Abstract Detection of blood-carried volatile organic compounds (VOCs) existing in the exhaled breath of human is an attractive research point for noninvasive diagnosis of diseases. In this research, we introduce a novel application of photonic crystals (PCs) for the detection of isoprene traces in the exhaled breath as a biomarker for liver fibrosis. This idea is introduced for the first time according to the best of our knowledge. The proposed sensor structure is a one-dimensional (1D) PC constructed from a multilayer stack of two dielectric materials covered with an air cavity layer filled with the dry exhaled breath (DEB) and a thin metallic layer of Au is attached on the top surface. Hence, the proposed sensor is configured as, [prism/Au/air cavity/(GaN/SiO2)10]. The transfer matrix method and the Drude model are adopted to calculate the numerical simulations and reflection spectra of the design. The essential key for sensing isoprene levels is the resonant optical Tamm plasmon (TP) states within the photonic bandgap. The obtained numerical results are promising such as high sensitivity (S) of 0.321 nm/ppm or 278720 nm/RIU. This technique can be reducing the risk of infection during the taking of blood samples by syringe. Also, it can prevent the pain of patients. Finally, this work opens the door for the detection of many diseases by analyzing the breaths of patients based on photonic crystals.


2020 ◽  
Vol 139 ◽  
pp. 110102 ◽  
Author(s):  
Xingyuan Wang ◽  
Yanpei Li ◽  
Jie Jin

Sign in / Sign up

Export Citation Format

Share Document