scholarly journals Detection of isoprene traces in exhaled breath by using photonic crystals as a biomarker for chronic liver fibrosis disease

Author(s):  
Ahmed Mehaney ◽  
Hussein A. Elsayed ◽  
Ashour M. Ahmed

Abstract Detection of blood-carried volatile organic compounds (VOCs) existing in the exhaled breath of human is an attractive research point for noninvasive diagnosis of diseases. In this research, we introduce a novel application of photonic crystals (PCs) for the detection of isoprene traces in the exhaled breath as a biomarker for liver fibrosis. This idea is introduced for the first time according to the best of our knowledge. The proposed sensor structure is a one-dimensional (1D) PC constructed from a multilayer stack of two dielectric materials covered with an air cavity layer filled with the dry exhaled breath (DEB) and a thin metallic layer of Au is attached on the top surface. Hence, the proposed sensor is configured as, [prism/Au/air cavity/(GaN/SiO2)10]. The transfer matrix method and the Drude model are adopted to calculate the numerical simulations and reflection spectra of the design. The essential key for sensing isoprene levels is the resonant optical Tamm plasmon (TP) states within the photonic bandgap. The obtained numerical results are promising such as high sensitivity (S) of 0.321 nm/ppm or 278720 nm/RIU. This technique can be reducing the risk of infection during the taking of blood samples by syringe. Also, it can prevent the pain of patients. Finally, this work opens the door for the detection of many diseases by analyzing the breaths of patients based on photonic crystals.

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2227 ◽  
Author(s):  
Ramya Selvaraj ◽  
Nilesh J. Vasa ◽  
S. M. Shiva Nagendra ◽  
Boris Mizaikoff

Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.


2013 ◽  
Vol 1 (8) ◽  
pp. 1659 ◽  
Author(s):  
Peng Yan ◽  
Guang Tao Fei ◽  
Guo Liang Shang ◽  
Bing Wu ◽  
Li De Zhang

2017 ◽  
Vol 26 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Arafa H. Aly ◽  
Hussein A. Elsayed ◽  
Christina Malek

We have obtained the optical properties of one-dimensional defective photonic crystals containing nanocomposite materials of Ag as a defect layer in UV region; the permittivity of nanocomposite materials depends on plasmon frequency of metal nanoparticles. Our analysis is based on the fundamentals of the transfer matrix method. We have investigated the effect of many parameters such as metal thickness, volume fraction, and defected dielectric materials on the intensity of a defect layer.


2017 ◽  
Vol 50 (6) ◽  
pp. 1700919 ◽  
Author(s):  
Kevin Lamote ◽  
Matthijs Vynck ◽  
Olivier Thas ◽  
Joris Van Cleemput ◽  
Kristiaan Nackaerts ◽  
...  

Malignant pleural mesothelioma (MPM) is predominantly caused by asbestos exposure and has a poor prognosis. Breath contains volatile organic compounds (VOCs) and can be explored as an early detection tool. Previously, we used multicapillary column/ion mobility spectrometry (MCC/IMS) to discriminate between patients with MPM and asymptomatic high-risk persons with a high rate of accuracy. Here, we aim to validate these findings in different control groups.Breath and background samples were obtained from 52 patients with MPM, 52 healthy controls without asbestos exposure (HC), 59 asymptomatic former asbestos workers (AEx), 41 patients with benign asbestos-related diseases (ARD), 70 patients with benign non-asbestos-related lung diseases (BLD) and 56 patients with lung cancer (LC).After background correction, logistic lasso regression and receiver operating characteristic (ROC) analysis, the MPM group was discriminated from the HC, AEx, ARD, BLD and LC groups with 65%, 88%, 82%, 80% and 72% accuracy, respectively. Combining AEx and ARD patients resulted in 94% sensitivity and 96% negative predictive value (NPV). The most important VOCs selected were P1, P3, P7, P9, P21 and P26.We discriminated MPM patients from at-risk subjects with great accuracy. The high sensitivity and NPV allow breath analysis to be used as a screening tool for ruling out MPM.


2009 ◽  
Vol 23 (05) ◽  
pp. 715-722
Author(s):  
LIMEI QI ◽  
ZIQIANG YANG ◽  
XI GAO

The reflected properties of one-dimensional frequency-dependent metallic-dielectric photonic crystals are investigated when disorders are introduced for the first time. It is demonstrated that disordered metallic-dielectric photonic crystal provides remarkably high reflection range compared with the corresponding period metallic-dielectric one when the degree of disorder is moderately chosen, and a wider stop band will be obtained with the increasing of periods. At last, the reflected properties influenced by incident angle for different polarizations are also calculated and discussed.


2021 ◽  
pp. 00493-2021
Author(s):  
M. Westhoff ◽  
M. Friedrich ◽  
J. I. Baumbach

The high sensitivity of methods, which are applied in breath analysis, entails a high risk of detecting analytes which do not derive from endogenous production. Consequentially, it appears useful to have knowledge about the composition of inhaled air and to include alveolar gradients into interpretation.The current study aimed to standardise sampling procedures in breath analysis, especially with multicapillary column ion-mobility spectrometry (MCC-IMS), by applying a simultaneous registration of inhaled air and exhaled breath.A “Double MCC-IMS” device, which for the first time allows simultaneous analysis of inhaled air and exhaled breath, was developed and tested in 18 healthy individuals. For this two BreathDiscoverys® (BDs) were coupled with each other.Measurements of inhaled air and exhaled breath in 18 healthy individuals (mean age 46±10.9 years; 9 men, 9 women) identified 35 different volatile organic compounds (VOCs) for further analysis. Not all out of these had positive alveolar gradients and could be regarded as endogenous VOCs; 16 VOCs had a positive alveolar gradient in mean, 19 VOCs a negative one. 12 VOCs were positive in more than 12 of the healthy subjects.For the first time in our understanding a method is described, which enables simultaneous measurement of inhaled air and exhaled breath. This facilitates the calculation of alveolar gradients and selection of endogenous VOCs for exhaled breath analysis. Only a part of VOCs in exhaled breath are truly endogenous VOCs. The observation of different and varying polarities of the alveolar gradients needs further analysis.


Lung ◽  
2017 ◽  
Vol 195 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Yu-ichi Yamada ◽  
Gen Yamada ◽  
Mitsuo Otsuka ◽  
Hirotaka Nishikiori ◽  
Kimiyuki Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document