scholarly journals Safety design method of a civil aircraft cargo door actuation system

2020 ◽  
Vol 2020 (14) ◽  
pp. 954-957
Author(s):  
Wang Danyang ◽  
Xu Haobang ◽  
Wang Xiaolu ◽  
Wu Hao ◽  
Nie Zhenjin
Author(s):  
Binbin Zhao ◽  
Xianping Li ◽  
Jie Li ◽  
Haixin Chen ◽  
Jianliang Ai

Icing is an important disaster-causing factor which threatens the flight safety of civil aircraft and a major safety issue of concern for the airworthiness. The design of icing protection system based on ice-tolerant concept can minimize the impact of icing on aerodynamic characteristics and fully utilize the potential of flight performance, which is the frontier direction of current icing protection research for civil aircraft. This paper aims at the requirements of civil aircraft flight safety design and airworthiness certification. The design method of civil aircraft icing protection system based on the concept of ice-tolerant capacity is analyzed from two aspects. One is the capacity of ice-tolerant for aircraft frame, the other one is the design of ice-tolerant with active control. The optimum design strategy of wing in aerodynamic performance considering icing loss is refined and the design idea of ice-tolerant protection control system based on flight control law reconstruction is formed. The change from passive flight safety of icing to active safety design of icing can effectively improve the survivability and safety of civil aircraft under icing weather conditions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3165
Author(s):  
Zhigang Wang ◽  
Yu Yang

A seamless and smooth morphing leading edge has remarkable potential for noise abatement and drag reduction of civil aircraft. Variable-stiffness compliant skin based on tailored composite laminate is a concept with great potential for morphing leading edge, but the currently proposed methods have difficulty in taking the manufacturing constraints or layup sequence into account during the optimization process. This paper proposes an innovative two-step design method for a variable-stiffness compliant skin of a morphing leading edge, which includes layup optimization and layup adjustment. The combination of these two steps can not only improve the deformation accuracy of the final profile of the compliant skin but also easily and effectively determine the layup sequence of the composite layup. With the design framework, an optimization model is created for a variable-stiffness compliant skin, and an adjustment method for its layups is presented. Finally, the deformed profiles between the directly optimized layups and the adjusted ones are compared to verify its morphing ability and accuracy. The final results demonstrate that the obtained deforming ability and accuracy are suitable for a large-scale aircraft wing.


Author(s):  
Yunwen Feng ◽  
Jiale Zhang ◽  
Xiaofeng Xue ◽  
Xiaoping Zhong ◽  
Wei Xie

Aircraft lug joint is the key part of load transfer. In order to improve the safety of lug joint, on the premise of meeting the design requirements of static strength and fatigue, the composite connection lug structure design technology of different metal materials is proposed in this paper. Firstly, the damage safety design and life reliability analysis of the lug structure are studied theoretically. Secondly, based on the concept of damage safety design and the design principle of deformation coordination, the design method of composite connection lug with deformation coordination is proposed, and the thickness ratio of single ear is 0.8:1:0.8. Finally, the reliability of the composite lug is analyzed. The results show that the structural design scheme of aluminum-titanium composite ear piece can meet the requirements of static strength and damage tolerance, and compared with the conventional ear structure, the failure probability of structure mission life is greatly reduced when the weight of the composite connection lug is only increased by 4.9%. The proposed method can effectively guide the structural design of composite ear piece.


2019 ◽  
Vol 93 ◽  
pp. 105079 ◽  
Author(s):  
Zongxia Jiao ◽  
Bo Yu ◽  
Shuai Wu ◽  
Yaoxing Shang ◽  
Haishan Huang ◽  
...  

1997 ◽  
Vol 3 (5) ◽  
pp. 138-141 ◽  
Author(s):  
Kawori KOYA ◽  
Yoshifumi OHMIYA ◽  
Kazunori HARADA ◽  
Takeyoshi TANAKA ◽  
Akihiko HOKUGO ◽  
...  

2019 ◽  
Vol 41 (13) ◽  
pp. 3756-3768 ◽  
Author(s):  
Salman Ijaz ◽  
Mirza Tariq Hamayun ◽  
Lin Yan ◽  
Hamdoon Ijaz ◽  
Cun Shi

In modern aircraft, the dissimilar redundant actuation system is used to resolve the actuator failure issues due to the common cause, thus increasing the system reliability. This paper proposes an adaptive integral sliding mode fault tolerant control strategy to deal with actuator fault/failure in the dissimilar redundant actuation system of civil aircraft. To cope with the unknown actuator faults, the adaptive integral sliding mode controller is designed where the modulation gain is made adaptive to the fault. To deal with the complete failure of certain actuator, the integral sliding mode control is integrated with control allocation scheme and distribute the control input signals to the redundant actuators. The performance of the proposed scheme is tested on the nonlinear model of dissimilar redundant actuation system, where the effect of external airload is accounted during simulations. The effectiveness of the proposed scheme is validated by comparing the simulations with the existing literature.


Sign in / Sign up

Export Citation Format

Share Document