scholarly journals Analysis on the vehicle‐induced path loss for millimetre‐wave V2V communication

2021 ◽  
Vol 15 (5) ◽  
pp. 495-502
Author(s):  
Zhou Feng ◽  
Ji Rui ◽  
Sun Jinglu ◽  
Cheng Kai ◽  
Xu Wei ◽  
...  
2013 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yuriy Ivanovich Nechayev ◽  
Xianyue Wu ◽  
Costas C. Constantinou ◽  
Peter S. Hall

2020 ◽  
Author(s):  
Glaucio Ramos ◽  
Carlos Vargas ◽  
Luiz Mello ◽  
Paulo Pereira ◽  
Sandro Gonçalves ◽  
...  

Abstract In this paper, we present the results of short-range path loss measurements in the microwave and millimetre wave bands, at frequencies between 27 and 40 GHz, obtained in a campaign inside a university campus in Rio de Janeiro, Brazil. Existing empirical path loss prediction models, including the alpha-beta-gamma (ABG) model and the close-in free space reference distance with frequency dependent path loss exponent (CIF) model are tested against the measured data, and an improved prediction method that includes the path loss dependence on the height di erence between transmitter and receiver is proposed. A fuzzy technique is also applied to predict the path loss and the results are compared with those obtained with the empirical prediction models.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4433 ◽  
Author(s):  
Mikael Nilsson ◽  
Carl Gustafson ◽  
Taimoor Abbas ◽  
Fredrik Tufvesson

The non line-of-sight (NLOS) scenario in urban intersections is critical in terms of traffic safety—a scenario where Vehicle-to-Vehicle (V2V) communication really can make a difference by enabling communication and detection of vehicles around building corners. A few NLOS V2V channel models exist in the literature but they all have some form of limitation, and therefore further research is need. In this paper, we present an alternative NLOS path loss model based on analysis from measured V2V communication channels at 5.9 GHz between six vehicles in two urban intersections. We analyze the auto-correlation of the large scale fading process and the influence of the path loss model on this. In cases where a proper model for the path loss and the antenna pattern is included, the de-correlation distance for the auto-correlation is as low as 2–4 m, and the cross-correlation for the large scale fading between different links can be neglected. Otherwise, the de-correlation distance has to be much longer and the cross-correlation between the different communication links needs to be considered separately, causing the computational complexity to be unnecessarily large. With these findings, we stress that vehicular ad-hoc network (VANET) simulations should be based on the current geometry, i.e., a proper path loss model should be applied depending on whether the V2V communication is blocked or not by other vehicles or buildings.


2019 ◽  
Vol 13 (8) ◽  
pp. 1113-1121 ◽  
Author(s):  
Guanshu Yang ◽  
Yan Zhang ◽  
Zunwen He ◽  
Jinxiao Wen ◽  
Zijie Ji ◽  
...  

2021 ◽  
Author(s):  
Glaucio Ramos ◽  
Carlos Vargas ◽  
Luiz Mello ◽  
Paulo Pereira ◽  
Robson Vieira ◽  
...  

Abstract In this paper, we present the results of short-range path loss measurement in the microwave and millimetre wave bands, at frequencies between 27 and 40 GHz, obtained in a campaign inside a university campus in Rio de Janeiro, Brazil. Existing empirical path loss prediction models, including the alpha-beta-gamma (ABG) model and the close-in free space reference distance with frequency-dependent path loss exponent (CIF) model, are tested against the measured data, and an improved prediction method that includes the path loss dependence on the height difference between transmitter and receiver is proposed. The main contribution of this paper is the use of the Fuzzy technique to perform path loss predictions for short links in the millimetre wave range, from 27 to 40 GHz, providing lower errors when compared to the traditional ABG and CIF models. However, it should be noted that the Fuzzy technique uses a set of equations to perform the prediction and the attenuation coefficient is not explicit as in the classical models. Also, a non-negligible correlation between the difference in height between transmitter and receiver positions and the path loss in such short links (i.e., the path inclination) has been observed and requires further investigation. If confirmed, it could provide an additional parameter to improve the accuracy of the traditional ABG model.


2015 ◽  
Vol 752-753 ◽  
pp. 1121-1124
Author(s):  
Zeng You Sun ◽  
Huan Huan Li

Due to the complexity of the millimetre-wave indoor propagation environment, using the conventional methods to analyze propagation characteristics of radio wave leads to great error, and the computational complexity is high. In view of the above problems, the prediction method for propagation characteristics of the indoor millimetre wave based on BP neural network is proposed; using its function approximation to describe the millimetre wave propagation parameter, finding out the mathematical relationship between its corresponding external factors and the signal attenuation, the mathematical logic relationship is constructed through establishing the prediction model. Simulation results show that using this method can quickly and intuitively obtain the relationship between the propagation distance and field intensity or path loss, respectively, with advantages of taking short time and high computational efficiency.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1309
Author(s):  
Keshvinder Singh Randhava ◽  
Mardeni Roslee ◽  
Zubaida Yusoff

Background: The exponential increase in pattern of vehicles on the roads demands a need to develop a vehicular infrastructure that may not only ease congestions and provide a better experience but also pivot the levels of safety among users. The development of wireless technology has made it convenient for machines, devices and vehicles to interact with one another. The efficacy of this wireless communications relies on utilising current and available technology to enable information to be shared efficiently. In the wake of the available advancement in wireless technology, a new dynamic spectrum management (DSM) in vehicle-to-vehicle (V2V) communication that coexists with the existing Long-Term Evolution (LTE) network to increase the throughput in V2V communication is proposed. This will provide some solutions to enable a more efficient vehicular infrastructure. Methods: This paper focuses on the utilization of DSM in V2V communications by selecting an appropriate frequency band through the selection of available licensed and unlicensed frequency bands for vehicles. Further investigations are done to identify the effect of interference in the dynamic spectrum by observing the path loss, SINR, and the throughput with various interfering users. Results: The results show that the performance of the proposed DSM augments a significant improvement in the overall throughput and the signal-to-interference-plus-noise ratio (SINR) value is reduced by up to 60% when compared to the fixed spectrum allocation. Conclusions: Although the dynamic spectrum is still affected by the interference from the existing cellular users, the throughput of the dynamic spectrum remains sufficient to transmit the information to other vehicles.


Sign in / Sign up

Export Citation Format

Share Document