scholarly journals Green synthesis of fly ash‐based zeolite Y by mixed alkali fusion method

2021 ◽  
Author(s):  
Bin Shi ◽  
Qing Chang
2010 ◽  
Vol 7 (4) ◽  
pp. 1200-1205 ◽  
Author(s):  
Parag Solanki ◽  
Vikal Gupta ◽  
Ruchi Kulshrestha

Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.


2017 ◽  
Vol 2 (2) ◽  
pp. 89 ◽  
Author(s):  
A.A. Shoppert ◽  
I.V. Loginova ◽  
L.I. Chaikin ◽  
D.A. Rogozhnikov

<p>Fly ash, composed of mullite, hematite, amorphous silica and quartz, is a promising source for the recovery of alumina and silica. Desilication with help of NaOH and alkali fusion-leaching method and utilization of alumina and silica in the fly ash for preparation of sodalite and silica white were explored in this research. The samples were characterized by using wet chemical analysis and X-ray diffraction. The optimal extraction of SiO<sub>2</sub> from Reftinskaya power plant fly ash was 46.2% with leaching at 95 <sup>o</sup>C for 3 h. Sodalite was synthesized at 200 °C for 1 h followed water leaching at 95 °C for 1 h. Silica white with specific surface area 180-220 m2/g was prepared by carbonation of the Na<sub>2</sub>SiO<sub>3</sub> solution at 40 <sup>o</sup>C for 90-120 min. The as-prepared silica has a purity of 98,8%.</p><p>The proposed method is suitable for the comprehensive utilization of the fly ash.</p>


2020 ◽  
Vol 37 (10) ◽  
pp. 689-701
Author(s):  
Seyedeh Mahsa Kamyab ◽  
Soroush Modabberi ◽  
Craig D. Williams ◽  
Alireza Badiei

2014 ◽  
Vol 675-677 ◽  
pp. 724-727 ◽  
Author(s):  
Wei Wei Tu ◽  
Yong Feng Zhang ◽  
Jie Bai ◽  
Wei Liu

Synthesis of pure-form zeolite 13X was investigated using the alkali fusion-hydrothermal method to dissolve Si and Al sources from fly ash, and with the addition of Si source, to prepare initial gel. Experimental results demonstrated, the regular morphology and homogeneous composition are in good agreement with standard zeolite 13X by characterization of XRD, SEM and IR. The properties of adsorption and CEC values were evaluated by BET and UV-spectrophotometry, respectively. All properties are much better than commercial zeolite 13X. Our results further revealed that like coal fly ash after alkali fusion pretreatment can be used for zeolite synthesis. Thus, It demonstrates a promising feedstock for the green synthesis of zeolites directly without experiencing intermediate chemicals.


Desalination ◽  
2011 ◽  
Vol 271 (1-3) ◽  
pp. 111-121 ◽  
Author(s):  
Mulan Zhang ◽  
Huayong Zhang ◽  
Dan Xu ◽  
Lu Han ◽  
Dongxiao Niu ◽  
...  

2009 ◽  
Vol 170 (2-3) ◽  
pp. 639-644 ◽  
Author(s):  
Z.T. Yao ◽  
M.S. Xia ◽  
Y. Ye ◽  
L. Zhang
Keyword(s):  
Fly Ash ◽  

2019 ◽  
Vol 2 (2) ◽  
pp. 10
Author(s):  
Sutarno Sutarno ◽  
Arief Budyantoro

Faujasite was hydrothermally synthesized from fly ash at 100oC in alkaline solution by reflux with 5M HCl and fusion with NaOH (weight ratio of NaOH/fly ash = 1.2) pretreatments. Kinetics of faujasite formation was performed by variation of hydrothermal time (0-120 hours). Thermal stability of faujasite from fly ash was tested at 400-900oC and was compared with commercial zeolite Y. The solid products were characterized by X-ray diffraction method. Results showed that faujasite was formed through dissolution of fly ash components such as quartz, mullite and amorphous aluminosilicates (0-3 hours) followed by crystallization to form faujasite (6-48 hours). In longer hydrothermal time (48-72 hours), faujasite transformed into zeolite P and completely formed hydroxysodalite after 120 hours. X-ray diffraction pattern showed that thermal stability of faujasite from fly ash was relatively lower than that of commercial zeolite Y. Faujasite from fly ash transformed into amorphous phase at 800oC whereas commercial zeolite Y transformed into amorphous phase at 900oC.


Sign in / Sign up

Export Citation Format

Share Document