scholarly journals Experimental results on implicit and explicit time-discretization of equivalent control-based sliding mode control

2016 ◽  
pp. 207-235 ◽  
Author(s):  
Huber ◽  
Acary ◽  
Boubakir ◽  
Plestan ◽  
Brogliato ◽  
...  
2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


Author(s):  
Hafedh Abid ◽  
Mohamed Chtourou ◽  
Ahmed Toumi

In this work we are interested to discrete robust fuzzy sliding mode control. The discrete SISO nonlinear uncertain system is presented by the Takgi- Sugeno type fuzzy model state. We recall the principle of the sliding mode control theory then we combine the fuzzy systems with the sliding mode control technique to compute at each sampling time the control law. The control law comports two terms: equivalent control law and switching control law which has a high frequency. The uncertainty is replaced by its upper bound. Inverted pendulum and mass spring dumper are used to check performance of the proposed fuzzy robust sliding mode control scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Guo Haigang ◽  
Li Hongxing ◽  
Zhao Weijing ◽  
Song Zhankui

Combining adaptive fuzzy sliding mode control with fuzzy or variable universe fuzzy switching technique, this study develops two novel direct adaptive schemes for a class of MIMO nonlinear systems with uncertainties and external disturbances. The proposed control schemes consist of fuzzy equivalent control terms, fuzzy switching control terms (in scheme one) or variable universe fuzzy switching control terms (in scheme two), and compensation control terms. The compensation control terms are used to relax the assumption on fuzzy approximation error. Based on Lyapunov stability theory, the parameters update laws are adaptively tuned online and the global asymptotic stability of the closed-loop system can be guaranteed. The major contribution of this study is to develop a novel framework for designing direct adaptive fuzzy sliding mode control scheme facing model uncertainties and external disturbances. The derived schemes can effectively solve the chattering problem and the equivalent control calculation in that environment. Simulation results performed on a two-link robotic manipulator demonstrate the feasibility of the proposed control schemes.


2017 ◽  
Vol 14 (5) ◽  
pp. 459-466 ◽  
Author(s):  
Fiaz Ahmad ◽  
Akhtar Rasool ◽  
Esref Emre Ozsoy ◽  
Asif Sabanoviç ◽  
Meltem Elitas

Purpose This paper aims to propose a robust cascaded controller based on proportional-integral (PI) and continuous sliding mode control. Design/methodology/approach Cascaded control structure is an attractive control scheme for DC-DC power converters. It has a two-loop structure where the outer loop contains PI controller and the inner loop uses sliding mode control (SMC). This structure thus combines the merits of both the control schemes. However, there are some issues that have prohibited its adoption in industry, the discontinuous nature of SMC which leads to variable switching frequency operation and is hard to realize practically. This paper attempts to overcome this issue by changing the discontinuous functionality of SMC to continuous by utilizing the concept of equivalent control. Findings The robustness of the controller designed is verified by considering various cases, namely, ideal case with no uncertainties, sudden variation of input supply voltage, load resistance, reference voltage, circuit-parameters and for noise disturbance. The controller effectiveness is validated by simulating the DC-DC boost and Cuk converters in SimPowerSystems toolbox of MATLAB/Simulink. It is shown that the performance of the proposed controller is satisfactory, and both reference output voltage and inductor current are tracked with little or no sensitivity to disturbances. Originality/value The results for various scenarios are interesting and show that the controller works quite satisfactorily for all the simulated uncertainties.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guoliang Zhao ◽  
Kaibiao Sun ◽  
Hongxing Li

This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.


Author(s):  
S. Ueno ◽  
J. H. Lee ◽  
P. E. Allaire ◽  
Y. Okada

A sliding mode control algorithm has been designed for control of a balance beam on two symmetric magnetic bearings. A state space model of the system is developed and the controller is separated into a linear and non-linear component. A reaching condition to bring the system to the sliding surface is developed and a continuous function boundary layer approach is evaluated to avoid chattering. Previous works have discussed theoretical and experimental sliding mode control with physical sensors. This paper represents the first use of a simple envelope filter for sliding mode self sensing. The system simulation demonstrates arrival at the hyperplane surface within 0.003 sec and converges to the zero angular displacement value within 0.008 sec. Experimental results produced system convergence to zero angular displacement within approximately 0.35 sec both for the case when an eddy current position sensor was used and the case when system self sensing was employed. Some small scale chatter was observed in the experimental results with a peak to peak magnitude of approximately 3 times larger in the self-sensing case as compared to the case with a physical sensor.


Sign in / Sign up

Export Citation Format

Share Document