Sliding Mode Control for Wheeled Inverted Pendulum

2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.

2019 ◽  
Vol 9 (12) ◽  
pp. 2508 ◽  
Author(s):  
Mengshi Zhang ◽  
Jian Huang ◽  
Yu Cao

Recently, the mobile wheeled inverted pendulum (MWIP) has gained an increasing interest in the field of robotics due to traffic and environmental protection problems. However, the MWIP system is characterized by its nonlinearity, underactuation, time-varying parameters, and natural instability, which make its modeling and control challenging. Traditionally, sliding mode control is a typical method for such systems, but it has the main shortcoming of a “chattering” phenomenon. To solve this problem, a super-twisting algorithm (STA)-based controller is proposed for the self-balancing and velocity tracking control of the MWIP system. Since the STA is essentially a second-order sliding mode control, it not only contains the merits of sliding mode control (SMC) in dealing with the uncertainties and disturbances but can also be effective in chattering elimination. Based on the STA, we develop an adaptive gain that helps to learn the upper bound of the disturbance by applying an adaptive law, called an adaptive super-twisting control algorithm (ASTA). The stability of the closed-loop system is ensured according to the Lyapunov theorem. Both nominal experiments and experiments with uncertainties are conducted to verify the superior performance of the proposed method.


2020 ◽  
Vol 67 (3) ◽  
pp. 2030-2041 ◽  
Author(s):  
Jian Huang ◽  
Mengshi Zhang ◽  
Songhyok Ri ◽  
Caihua Xiong ◽  
Zhijun Li ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4841
Author(s):  
Khaoula Derbel ◽  
Károly Beneda

The interest in turbojet engines was emerging in the past years due to their simplicity. The purpose of this article is to investigate sliding mode control (SMC) for a micro turbojet engine based on an unconventional compound thermodynamic parameter called Turbofan Power Ratio (TPR) and prove its advantage over traditional linear methods and thrust parameters. Based on previous research by the authors, TPR can be applied to single stream turbojet engines as it varies proportionally to thrust, thus it is suitable as control law. The turbojet is modeled by a linear, parameter-varying structure, and variable structure sliding mode control has been selected to control the system, as it offers excellent disturbance rejection and provides robustness against discrepancies between mathematical model and real plant as well. Both model and control system have been created in MATLAB® Simulink®, data from real measurement have been taken to evaluate control system performance. The same assessment is conducted with conventional Proportional-Integral-Derivative (PID) controllers and showed the superiority of SMC, furthermore TPR computation using turbine discharge temperature was proven. Based on the results of the simulation, a controller layout is proposed and its feasibility is investigated. The utilization of TPR results in more accurate thrust output, meanwhile it allows better insight into the thermodynamic process of the engine, hence it carries an additional diagnostic possibility.


Sign in / Sign up

Export Citation Format

Share Document