scholarly journals Design and implementation of an improved power‐electronic system for feeding loads of smart homes in remote areas using renewable energy sources

2021 ◽  
Vol 15 (1) ◽  
pp. 1-16
Author(s):  
Behnam Zamanzad Ghavidel ◽  
Mohammad Maalandish ◽  
Seyed Hossein Hosseini ◽  
Mehran Sabahi ◽  
Behnam Mohammadi‐Ivatloo
2020 ◽  
Vol 60 (1) ◽  
pp. 287-294
Author(s):  
C. Dumitrescu ◽  
R. Rădoi ◽  
C. Cristescu ◽  
L. Dumitrescu

The article presents an experimental model of a modular structure system for the production of thermal energy and the results of conducting specific tests. The experimental model uses two renewable energy sources - solar energy and energy generated by burning biomass - to provide thermal energy for an increased duration, regardless of the atmospheric factors. Properly sized, the system can be designed as a series product, in a variety of powers, to be used by heat suppliers, and also by individuals, especially the ones from remote areas, who want to ensure their thermal energy independence by using renewable energy.


Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


2006 ◽  
Vol 53 (4) ◽  
pp. 1002-1016 ◽  
Author(s):  
J.M. Carrasco ◽  
L.G. Franquelo ◽  
J.T. Bialasiewicz ◽  
E. Galvan ◽  
R.C. PortilloGuisado ◽  
...  

Author(s):  
Heliasadat Hosseinian ◽  
Hossein Shahinzadeh ◽  
Gevork B. Gharehpetian ◽  
Zohreh Azani ◽  
Mahdi Shaneh

Nowadays, unlike depleting fossil fuel resources, the integration of different types of renewable energy, as distributed generation sources, into power systems is accelerated and the technological development in this area is evolving at a frantic pace. Thus, inappropriate use of them will be irrecoverably detrimental. The power industry will reach a turning point in the pervasiveness of these infinite energy sources by three factors. Climate changes due to greenhouse gas accumulation in the atmosphere; increased demand for energy consumption all over the world, especially after the genesis of Bitcoin and base cryptocurrencies; and establishing a comprehensive perspective for the future of renewable energy. The increase in the pervasiveness of renewable energy sources in small-scale brings up new challenges for the power system operators to manage an abundant number of small-scale generation sources, called microsources. The current structure of banking systems is unable to handle such massive and high-frequency transactions. Thus the incorporation of cryptocurrencies is inevitable. In addition, by utilization of IoT-enabled devices, a large body of data will be produced must be securely transferred, stored, processed, and managed in order to boost the observability, controllability, and the level of autonomy of the smart power systems. Then the appropriate controlling measures must be performed through control signals in order to serve the loads in a stable, uninterruptible, reliable, and secure way. The data acquires from IoT devices must be analyzed using artificial intelligence methods such as big data techniques, data mining, machine learning, etc. with a scant delay or almost real-time. These measures are the controversial issues of modern power systems, which are yet a matter of debate. This study delves into the aforementioned challenges and opportunities, and the corresponding solutions for the incorporation of IoT and blockchain in power systems, particularly in the distribution level and residential section, are addressed. In the last section, the role of IoT in smart buildings and smart homes, especially for energy hubs schemes and the management of residential electric vehicle supply equipment is concisely discussed.


2019 ◽  
Vol Volume 30 - 2019 - MADEV... ◽  
Author(s):  
Seyed Masoud Mohseni-Bonab ◽  
Innocent Kamwa

In this paper, a completed review of recent researches about modern power converter based electrotechnical systems (ETSs) has been carried out. In particular, power electronics (PEs) based ETSs have been investigated. The literature review consists of a standard classification of PEs-based ETSs, along with a survey on strengths and weaknesses of these devices impact on renewable energy sources. Dans cet article, une revue complète des recherches récentes sur les systèmes électrotechniques basés sur les convertisseurs de puissance modernes (ETS) est réalisée. En particulier, les ETS basés sur l'électronique de puissance (PE) sont étudiés. La revue de la littérature consiste en une classification standard des ETS basés sur les PE, ainsi qu'une étude sur des forces et les faiblesses de ces dispositifs sur les sources d'énergie renouvelables.


2010 ◽  
Vol 108-111 ◽  
pp. 1471-1476
Author(s):  
Jin Gang Han ◽  
Dong Kai Peng ◽  
Ji Fang Li ◽  
Tian Hao Tang

For the depletion of the limited traditional energy and the deterioration of the living environment, it is a focus of attention of the word for utilization of clean and renewable energy sources such as wind, solar and hydrogen Energy. In this paper, the design of a robust voltage source grid-connected converter is developed. And it is used in a hybrid renewable power system (HRPS). The power electronic system and the control system are introduced. Finally, some experimental results of the system are presented.


Sign in / Sign up

Export Citation Format

Share Document