scholarly journals Preliminary analysis of long‐term storage requirement in enabling high renewable energy penetration: A case of East Asia

Author(s):  
Ershun Du ◽  
Haiyang Jiang ◽  
Jinyu Xiao ◽  
Jinming Hou ◽  
Ning Zhang ◽  
...  
2019 ◽  
Vol 114 ◽  
pp. 05005 ◽  
Author(s):  
Alexey Kazakov ◽  
Dmitry Blinov ◽  
Ivan Romanov ◽  
Dmitry Dunikov ◽  
Vasily Borzenko

Significant progress in the installation of renewable energy requires the improvement of energy production and storage technologies. Hydrogen energy storage systems based on reversible metal hydride materials can be used as an energy backup system. Metal hydride hydrogen storage systems are distinguished by a high degree of safety of their use, since hydrogen is stored in a solid phase, a high volumetric density of stored hydrogen, and the possibility of long-term storage without losses. A distinctive feature of metal hydride materials is the reversible and selective absorption and release of high-purity hydrogen. This paper presents experimental studies of LaNi5-based metal hydride materials with a useful hydrogen capacity of 1.0–1.3 wt.% H2 with equilibrium pressures of 0.025 - 0.05 MPa and 0.1 - 1.2 MPa at moderate temperatures of 295 - 353 K for the hydrogen purification systems and hydrogen long-term storage systems, respectively. The applicability of metal hydride technologies for renewable energy sources as energy storage systems in the form of hydrogen is also shown.


1983 ◽  
Vol 26 ◽  
Author(s):  
M. Kubota ◽  
I. Yamaguchi ◽  
K. Okada ◽  
Y. Morita ◽  
K. Nakano ◽  
...  

ABSTRACTRemoval of the long-lived radionuclides from high-level waste (HLW) is a potential means not only for making wastes more acceptable in terms of long term hazards, but also for alleviating storage requirement. From these points, the authors are developing a method of partitioning actinides, Sr-90 and Cs-137 from HLW. A chemical flow-sheet has been constructed and experiments with actual HLW were initiated in 1982. Through the partitioning, active elements in HLW can be fractionated into 3 groups. Total volume of the solid materials of the 3 groups was calculated and found to be reduced to less than one-third of the volume of the vitrified material containing 10 wt% of fission products as oxide. Such volume reduction seems to facilitate the long term storage or the deep geological disposal of HLW.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Sign in / Sign up

Export Citation Format

Share Document