scholarly journals A catalog of early-type stars toward the Galactic center

2016 ◽  
Vol 585 ◽  
pp. A141 ◽  
Author(s):  
P. Grosbøl
2016 ◽  
Vol 11 (S322) ◽  
pp. 237-238
Author(s):  
Abhimat K. Gautam ◽  
Tuan Do ◽  
Andrea M. Ghez ◽  
Jessica R. Lu ◽  
Mark R. Morris ◽  
...  

AbstractWe present constraints on the variability and binarity of young stars in the central 10 arcseconds (~ 0.4 pc) of the Milky Way Galactic Center (GC) using Keck Adaptive Optics data over a 12 year baseline. Given our experiment’s photometric uncertainties, at least 36% of our sample’s known early-type stars are variable. We identified eclipsing binary systems by searching for periodic variability. In our sample of spectroscopically confirmed and likely early-type stars, we detected the two previously discovered GC eclipsing binary systems. We derived the likely binary fraction of main sequence, early-type stars at the GC via Monte Carlo simulations of eclipsing binary systems, and find that it is at least 32% with 90% confidence.


2015 ◽  
Vol 12 (S316) ◽  
pp. 50-54
Author(s):  
A. Feldmeier-Krause ◽  
N. Neumayer ◽  
R. Schödel ◽  
A. Seth ◽  
P. T. de Zeeuw ◽  
...  

AbstractWithin the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster. This cluster forms a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ~ 75% of nearby galaxies. It is, however, not fully understood how nuclear star clusters form. The Milky Way nuclear star cluster is the closest of its kind. At a distance of only 8 kpc we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster the perfect local reference object for understanding the structure and assembly history of nuclear star clusters in general. There are of the order of 107 stars within the central 10 pc of the Galactic center. Most of these stars are several Gyr old late-type stars. However, there are also more than 100 hot early-type stars in the central parsec of the Milky Way, with ages of only a few Myr. Beyond a projected distance of 0.5 pc of the Galactic center, the density of young stars was largely unknown, since only very few spectroscopic observations existed so far. We covered the central >4 pc2 (0.75 sq.arcmin) of the Galactic center using the integral-field spectrograph KMOS (VLT). We extracted more than 1,000 spectra from individual stars and identified >20 new early-type stars based on their spectra. We studied the spatial distribution of the different populations and their kinematics to put constraints on the assembly history of the Milky Way nuclear star cluster.


2001 ◽  
Vol 205 ◽  
pp. 32-35 ◽  
Author(s):  
Robert F. Coker ◽  
Sera Markoff

At the center of the Milky Way lurks a unique compact nonthermal radio source, Sgr A*. It is thought to be powered by a 2.6 × 106 solar mass black hole that is accreting the stellar winds from the numerous early-type stars that exist in the central parsec. However, until recent high resolution Chandra observations, Sgr A* had never been unequivocably detected at wavelengths shorter than the sub-millimeter. We present a spherical accretion model which is consistent with both the flux and steep spectral shape of the X-ray emission from Sgr A*.


2021 ◽  
Vol 646 ◽  
pp. L4
Author(s):  
Andreas Irrgang ◽  
Markus Dimpel ◽  
Ulrich Heber ◽  
Roberto Raddi

Since the discovery of hypervelocity stars in 2005, it has been widely believed that only the disruption of a binary system by a supermassive black hole at the Galactic center (GC), that is, the so-called Hills mechanism, is capable of accelerating stars to beyond the Galactic escape velocity. In the meantime, however, driven by the Gaia space mission, there is mounting evidence that many of the most extreme high-velocity early-type stars at high Galactic latitudes do originate in the Galactic disk and not in the GC. Moreover, the ejection velocities of these extreme disk-runaway stars exceed the predicted limits of the classical scenarios for the production of runaway stars. Based on proper motions from the Gaia early data release 3 and on recent and new spectrophotometric distances, we studied the kinematics of 30 such extreme disk-runaway stars, allowing us to deduce their spatial origins in and their ejection velocities from the Galactic disk with unprecedented precision. Only three stars in the sample have past trajectories that are consistent with an origin in the GC, most notably S5-HVS 1, which is the most extreme object in the sample by far. All other program stars are shown to be disk runaways with ejection velocities that sharply contrast at least with classical ejection scenarios. They include HVS 5 and HVS 6, which are both gravitationally unbound to the Milky Way. While most stars originate from within a galactocentric radius of 15 kpc, which corresponds to the observed extent of the spiral arms, a group of five stars stems from radii of about 21−29 kpc. This indicates a possible link to outer Galactic rings and a potential origin from infalling satellite galaxies.


1966 ◽  
Vol 24 ◽  
pp. 77-90 ◽  
Author(s):  
D. Chalonge

Several years ago a three-parameter system of stellar classification has been proposed (1, 2), for the early-type stars (O-G): it was an improvement on the two-parameter system described by Barbier and Chalonge (3).


1999 ◽  
Vol 518 (2) ◽  
pp. 890-900 ◽  
Author(s):  
Jessica M. Chapman ◽  
Claus Leitherer ◽  
Barbel Koribalski ◽  
Roderick Bouter ◽  
Michelle Storey

1980 ◽  
Vol 4 (1) ◽  
pp. 95-97 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner

As part of a general investigation of interstellar clouds associated with southern HII regions we have begun a high-resolution study of the sodium D-line absorption in the directions of early-type stars that are likely to be associated with or located behind the clouds.


1998 ◽  
Vol 188 ◽  
pp. 224-225
Author(s):  
S. Tanaka ◽  
S. Kitamoto ◽  
T. Suzuki ◽  
K. Torii ◽  
M.F. Corcoran ◽  
...  

X-rays from early-type stars are emitted by the corona or the stellar wind. The materials in the surface layer of early-type stars are not contaminated by nuclear reactions in the stellar inside. Therefore, abundance study of the early-type stars provides us an information of the abundances of the original gas. However, the X-ray observations indicate low-metallicity, which is about 0.3 times of cosmic abundances. This fact raises the problem on the cosmic abundances.


1985 ◽  
Vol 111 ◽  
pp. 411-413
Author(s):  
Janet Rountree ◽  
George Sonneborn ◽  
Robert J. Panek

Previous studies of ultraviolet spectral classification have been insufficient to establish a comprehensive classification system for ultraviolet spectra of early-type stars because of inadequate spectral resolution. We have initiated a new study of ultraviolet spectral classification of B stars using high-dispersion IUE archival data. High-dispersion SWP spectra of MK standards and other B stars are retrieved from the IUE archives and numerically degraded to a uniform resolution of 0.25 or 0.50 Å. The spectra (in the form of plots or photowrites) are then visually examined with the aim of setting up a two-dimensional classification matrix. We follow the method used to create the MK classification system for visual spectra. The purpose of this work is to examine the applicability of the MK system (and in particular, the set of standard stars) in the ultraviolet, and to establish classification criteria in this spectral region.


Sign in / Sign up

Export Citation Format

Share Document