scholarly journals On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology

2016 ◽  
Vol 590 ◽  
pp. A64 ◽  
Author(s):  
Maurizio Salaris ◽  
Santi Cassisi ◽  
Adriano Pietrinferni
1997 ◽  
Vol 189 ◽  
pp. 363-368
Author(s):  
Robert T. Rood

For 25 years our ignorance of the physical basis of this mass loss process has been the barrier to progress in understanding horizontal branch morphology. I review some recent observational and theoretical results which may be giving us clues about the nature of the mass loss process.


1981 ◽  
Vol 4 (2) ◽  
pp. 145-148
Author(s):  
P. R. Wood

In this review, I will be concentrating on problems related to the evolution of stars on the asymptotic giant branch (AGB). AGB stars are defined as stars which have completed core helium burning and have subsequently developed degenerate carbon/oxygen cores surrounded by hydrogen and helium burning shells; such stars have main sequence masses M≤9 M⊙ (Paczynski 1971; Becker and Iben 1980). In the HR diagram most AGB stars sit on the red giant branch. An exception to this rule occurs in Population II systems, where the AGB stars evolve asymptotically to the red giant branch from the blue side as the luminosity increases after completion of core helium burning on the horizontal branch.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


2014 ◽  
Vol 66 (4) ◽  
pp. 82 ◽  
Author(s):  
Zhenxin Lei ◽  
Xuemei Chen ◽  
Xiaoyu Kang ◽  
Fenghui Zhang ◽  
Zhanwen Han

1996 ◽  
Vol 174 ◽  
pp. 357-358
Author(s):  
I. Saviane ◽  
G. Piotto ◽  
M. Capaccioli ◽  
F. Fagotto

The bimodal nature of the horizontal branch (HB) of NGC 1851 is known since Stetson (1981). In order to better understand the properties of its HB, we collected a set of data at the ESO-NTT telescope, which provides a full coverage of the cluster area. Additional archive images from the HST-WFPC camera have been used in order to study the central region. The resulting c-m diagram (CMD) for 20500 stars is presented in Fig. 1 (left). Despite its metallicity ([Fe/H]=−1.3), NGC 1851 presents a well defined blue HB tail, besides the expected red clump. The observed CMD has been compared with the synthetic ones. The bimodal HB can be reproduced assuming that there are two stellar populations in the cluster, with an age difference of ∼ 4 Gyr, hypothesis not supported by other properties of the CMD. On the other side, if we assume that the stars in NGC 1851 are 15 Gyr old (as suggested by the difference between the HB and the TO luminosities), only a bimodal mass loss can reproduce the HB morphology: only stars with higher than standard mass loss rate are able to populate the blue-HB (BHB) tail (Fig. 1,left). There are no observational evidences for a bimodal distribution of other parameters (He, CNO, etc.).


2019 ◽  
Vol 629 ◽  
pp. A53 ◽  
Author(s):  
M. Torelli ◽  
G. Iannicola ◽  
P. B. Stetson ◽  
I. Ferraro ◽  
G. Bono ◽  
...  

Context. Theory and observations indicate that the distribution of stars along the horizontal branch of Galactic globular clusters mainly depends on the metal content. However, the existence of globular clusters with similar metal content and absolute age but different horizontal branch morphologies, suggests the presence of another parameter affecting the star distribution along the branch. Aims. To investigate the variation of the horizontal branch morphology in Galactic globular clusters, we define a new photometric horizontal branch morphology index, overcoming some of the limitations and degeneracies affecting similar indices available in the literature. Methods. We took advantage of a sample of 64 Galactic globular clusters, with both space-based imaging data (Advanced Camera for Surveys survey of Galactic globular clusters) and homogeneous ground-based photometric catalogues in five different bands (U, B, V, R, I). The new index, τHB, is defined as the ratio between the areas subtended by the cumulative number distribution in magnitude (I) and in colour (V − I) of all stars along the horizontal branch. Results. This new index shows a linear trend over the entire range in metallicity (−2.35 ≤ [Fe/H] ≤ −0.12) covered by our Galactic globular cluster sample. We found a linear relation between τHB and absolute cluster ages. We also found a quadratic anti-correlation with [Fe/H], becoming linear when we eliminate the age effect on τHB values. Moreover, we identified a subsample of eight clusters that are peculiar according to their τHB values. These clusters have bluer horizontal branch morphology when compared to typical ones of similar metallicity. These findings allow us to define them as the ’second parameter’ clusters in the sample. A comparison with synthetic horizontal branch models suggests that they cannot be entirely explained with a spread in helium content.


2011 ◽  
Vol 193 (2) ◽  
pp. 23 ◽  
Author(s):  
I. McDonald ◽  
M. L. Boyer ◽  
J. Th. van Loon ◽  
A. A. Zijlstra ◽  
J. L. Hora ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document