scholarly journals Magnetic field evolution in dwarf and Magellanic-type galaxies

2018 ◽  
Vol 611 ◽  
pp. A7 ◽  
Author(s):  
H. Siejkowski ◽  
M. Soida ◽  
K. T. Chyży

Aims. Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods. We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results. The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s−1) and fast (100 km s−1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.

2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Gregory G. Howes ◽  
Sofiane Bourouaine

Plasma turbulence occurs ubiquitously in space and astrophysical plasmas, mediating the nonlinear transfer of energy from large-scale electromagnetic fields and plasma flows to small scales at which the energy may be ultimately converted to plasma heat. But plasma turbulence also generically leads to a tangling of the magnetic field that threads through the plasma. The resulting wander of the magnetic field lines may significantly impact a number of important physical processes, including the propagation of cosmic rays and energetic particles, confinement in magnetic fusion devices and the fundamental processes of turbulence, magnetic reconnection and particle acceleration. The various potential impacts of magnetic field line wander are reviewed in detail, and a number of important theoretical considerations are identified that may influence the development and saturation of magnetic field line wander in astrophysical plasma turbulence. The results of nonlinear gyrokinetic simulations of kinetic Alfvén wave turbulence of sub-ion length scales are evaluated to understand the development and saturation of the turbulent magnetic energy spectrum and of the magnetic field line wander. It is found that turbulent space and astrophysical plasmas are generally expected to contain a stochastic magnetic field due to the tangling of the field by strong plasma turbulence. Future work will explore how the saturated magnetic field line wander varies as a function of the amplitude of the plasma turbulence and the ratio of the thermal to magnetic pressure, known as the plasma beta.


1990 ◽  
Vol 140 ◽  
pp. 318-318
Author(s):  
A.I. Gomez De Castro

Serpens is a region of low mass star formation where the magnetic field seems to play a fundamental role. The major axis of the Serpens outflows are aligned with the magnetic field. The most outstanding object in the region is the Serpens Reflection Nebula, SRN. This is characterized by a rather complex bipolar structure with several knots of gas and dust embedded in both nebular lobes. The western lobe is directed out of the cloud toward the observer. The SRN is illuminated by the PMS star Serpens/SVS 2. The star is surrounded by a dust disk; the polarization pattern of the disk can be interpreted as produced by dust grains aligned by the magnetic field frozen-in with the disk.


2010 ◽  
Vol 6 (S274) ◽  
pp. 398-400
Author(s):  
K. Kulpa-Dybeł ◽  
K. Otmianowska-Mazur ◽  
B. Kulesza-Żydzik ◽  
G. Kowal ◽  
D. Wóltański ◽  
...  

AbstractWe study the global evolution of the magnetic field and interstellar medium (ISM) of the barred and ringed galaxies in the presence of non-axisymmetric components of the potential, i.e. the bar and/or the oval perturbations. The magnetohydrodynamical dynamo is driven by cosmic rays (CR), which are continuously supplied to the disk by supernova (SN) remnants. Additionally, weak, dipolar and randomly oriented magnetic field is injected to the galactic disk during SN explosions. To compare our results directly with the observed properties of galaxies we construct realistic maps of high-frequency polarized radio emission. The main result is that CR driven dynamo can amplify weak magnetic fields up to few μG within few Gyr in barred and ringed galaxies. What is more, the modelled magnetic field configuration resembles maps of the polarized intensity observed in barred and ringed galaxies.


2008 ◽  
Vol 4 (S259) ◽  
pp. 509-514 ◽  
Author(s):  
Volker Heesen ◽  
M. Krause ◽  
R. Beck ◽  
R.-J. Dettmar

AbstractWe present radio continuum polarimetry observations of the nearby edge-on galaxy NGC 253 which possesses a very bright radio halo. Using the vertical synchrotron emission profiles and the lifetimes of cosmic-ray electrons, we determined the cosmic-ray bulk speed as 300±30 km s−1, indicating the presence of a galactic wind in this galaxy. The large-scale magnetic field was decomposed into a toroidal axisymmetric component in the disk and a poloidal component in the halo. The poloidal component shows a prominent X-shaped magnetic field structure centered on the nucleus, similar to the magnetic field observed in other edge-on galaxies. Faraday rotation measures indicate that the poloidal field has an odd parity (antisymmetric). NGC 253 offers the possibility to compare the magnetic field structure with models of galactic dynamos and/or galactic wind flows.


2020 ◽  
Vol 633 ◽  
pp. A144 ◽  
Author(s):  
B. Vollmer ◽  
M. Soida ◽  
R. Beck ◽  
M. Powalka

One of the tightest correlations in astronomy is the relation between the integrated radio continuum and the far-infrared (FIR) emission. Within nearby galaxies, variations in the radio–FIR correlation have been observed, mainly because the cosmic ray electrons migrate before they lose their energy via synchrotron emission or escape. The major cosmic-ray electron transport mechanisms within the plane of galactic disks are diffusion, and streaming. A predicted radio continuum map can be obtained by convolving the map of cosmic-ray electron sources, represented by that of the star formation, with adaptive Gaussian and exponential kernels. The ratio between the smoothing lengthscales at 6 cm and 20 cm can be used to determine, between diffusion and streaming, which is the dominant transport mechanism. The dependence of the smoothing lengthscale on the star formation rate bears information on the dependence of the magnetic field strength, or the ratio between the ordered and turbulent magnetic field strengths on star formation. Star formation maps of eight rather face-on local and Virgo cluster spiral galaxies were constructed from Spitzer and Herschel infrared and GALEX UV observations. These maps were convolved with adaptive Gaussian and exponential smoothing kernels to obtain model radio continuum emission maps. It was found that in asymmetric ridges of polarized radio continuum emission, the total power emission is enhanced with respect to the star formation rate. At a characteristic star formation rate of $ \dot{\Sigma}_*=8 \times 10^{-3}\,M_{\odot} $ yr−1 kpc−2, the typical lengthscale for the transport of cosmic-ray electrons is l = 0.9 ± 0.3 kpc at 6 cm, and l = 1.8 ± 0.5 kpc at 20 cm. Perturbed spiral galaxies tend to have smaller lengthscales. This is a natural consequence of the enhancement of the magnetic field caused by the interaction. The discrimination between the two cosmic-ray electron transport mechanisms, diffusion, and streaming is based on (i) the convolution kernel (Gaussian or exponential); (ii) the dependence of the smoothing kernel on the local magnetic field, and thus on the local star formation rate; (iii) the ratio between the two smoothing lengthscales via the frequency dependence of the smoothing kernel, and (iv) the dependence of the smoothing kernel on the ratio between the ordered and the turbulent magnetic field. Based on our empirical results, methods (i) and (ii) cannot be used to determine the cosmic ray transport mechanism. Important asymmetric large-scale residuals and a local dependence of the smoothing length on Bord/Bturb are most probably responsible for the failure of methods (i) and (ii), respectively. On the other hand, the classifications based on l6 cm/l20 cm (method iii) and Bord/Bturb (method iv), are well consistent and complementary. We argue that in the six Virgo spiral galaxies, the turbulent magnetic field is globally enhanced in the disk. Therefore, the regions where the magnetic field is independent of the star formation rate are more common. In addition, Bord/Bturb decreases, leading to a diffusion lengthscale that is smaller than the streaming lengthscale. Therefore, cosmic ray electron streaming dominates in most of the Virgo spiral galaxies.


1990 ◽  
Vol 140 ◽  
pp. 305-308
Author(s):  
Rolf Güsten ◽  
Dirk Fiebig

We present results of recent circular polarization experiments with the MPIfR 100-m telescope, revealing for the first time, the magnetic field strength towards interstellar H2O masers and the dense cores of local dark cloud complexes. Weak Zeeman splittings of a few 10 kHz only in the 22.235 GHz maser transition of the non-paramagnetic H2O molecule imply magnetic field strengths of ~ 50 mG in the dense (n ~ 1010 cm−3) masing layer. With the recently identified CCS radical it became possible to study the magnetic field associated with dense (~ 105 cm−3) dark cloud cores, the potential sites of future star formation. We report the detection of a −110μG field towards TMC-1C, a low-mass core associated with the Taurus Molecular Cloud. From complementary gas density and kinetic temperature probing measurements, we derive approximate equipartition between magnetic, gravitational and thermal energy for this clump.


2010 ◽  
Vol 6 (S274) ◽  
pp. 381-384
Author(s):  
Katarzyna Otmianowska-Mazur ◽  
Katarzyna Kulpa-Dybeł ◽  
Barbara Kulesza-Żydzik ◽  
Hubert Siejkowski ◽  
Grzegorz Kowal

AbstractWe present the results of the three-dimensional, fully non-linear MHD simulations of the large-scale magnetic field evolution in a barred galaxy with the back reaction of magnetic field to gas. We also include the process of the cosmic-ray driven dynamo. In addition, we check what physical processes are responsible for the magnetic field evolution in the tidally influenced spiral galaxies. We solve the MHD equations for the gas and magnetic field in a spiral galaxy with gravitationally prescribed bulge, disk and halo which travels along common orbit with the second body. In order to compare our modeling results with the observations we also construct the maps of high-frequency (Faraday rotation-free) polarized radio emission from the simulated magnetic fields. The model accounts for the effects of projection and limited resolution.We found that the obtained magnetic field configurations are highly similar to the observed maps of the polarized intensity of barred galaxies, because the modeled vectors form coherent structures along the bar and spiral arms. We also found a physical explanation of the problem of inconsistency between the velocity and magnetic fields character present in this type of galaxies. Due to the dynamical influence of the bar, the gas forms spiral waves which go radially outward. Each spiral arm forms the magnetic arm which stays much longer in the disk than the gaseous spiral structure. The modeled total energy of magnetic field and magnetic flux grows exponentially due to the action of the cosmic-ray driven dynamo. We also obtained the polarization maps of tidally influenced spiral galaxies which are similar to observations.


2010 ◽  
Vol 6 (S271) ◽  
pp. 187-196 ◽  
Author(s):  
Paolo Padoan ◽  
Tuomas Lunttila ◽  
Mika Juvela ◽  
Åke Nordlund ◽  
David Collins ◽  
...  

AbstractSupersonic magneto-hydrodynamic (MHD) turbulence in molecular clouds (MCs) plays an important role in the process of star formation. The effect of the turbulence on the cloud fragmentation process depends on the magnetic field strength. In this work we discuss the idea that the turbulence is super-Alfvénic, at least with respect to the cloud mean magnetic field. We argue that MCs are likely to be born super-Alfvénic. We then support this scenario based on a recent simulation of the large-scale warm interstellar medium turbulence. Using small-scale isothermal MHD turbulence simulation, we also show that MCs may remain super-Alfvénic even with respect to their rms magnetic field strength, amplified by the turbulence. Finally, we briefly discuss the comparison with the observations, suggesting that super-Alfvénic turbulence successfully reproduces the Zeeman measurements of the magnetic field strength in dense MC clouds.


2020 ◽  
Vol 494 (3) ◽  
pp. 3790-3798 ◽  
Author(s):  
Yasufumi Kojima ◽  
Kazuki Suzuki

ABSTRACT We examine the effects of plastic flow that appear in a neutron-star crust when a magnetic stress exceeds the threshold. The dynamics involved are described using the Navier–Stokes equation comprising the viscous-flow term, and the velocity fields for the global circulation are determined using quasi-stationary approximation. We simulate the magnetic-field evolution by taking into consideration the Hall drift, Ohmic dissipation, and fluid motion induced by the Lorentz force. The decrease in the magnetic energy is enhanced, as the energy converts to the bulk motion energy and heat. It is found that the bulk velocity induced by the Lorentz force has a significant influence in the low-viscosity and strong-magnetic-field regimes. This effect is crucial near magnetar surfaces.


2019 ◽  
Vol 15 (S354) ◽  
pp. 169-180
Author(s):  
Axel Brandenburg

AbstractWe discuss selected aspects regarding the magnetic field evolution of solar-type stars. Most of the stars with activity cycles are in the range where the normalized chromospheric Calcium emission increases linearly with the inverse Rossby number. For Rossby numbers below about a quarter of the solar value, the activity saturates and no cycles have been found. For Rossby numbers above the solar value, again no activity cycles have been found, but now the activity goes up again for a major fraction of the stars. Rapidly rotating stars show nonaxisymmetric large-scale magnetic fields, but there is disagreement between models and observations regarding the actual value of the Rossby number where this happens. We also discuss the prospects of detecting the sign of magnetic helicity using various linear polarization techniques both at the stellar surface using the parity-odd contribution to linear polarization and above the surface using Faraday rotation.


Sign in / Sign up

Export Citation Format

Share Document