scholarly journals A star-forming dwarf galaxy candidate in the halo of NGC 4634

2018 ◽  
Vol 620 ◽  
pp. A29 ◽  
Author(s):  
Y. Stein ◽  
D. J. Bomans ◽  
P. Kamphuis ◽  
E. Jütte ◽  
M. Langener ◽  
...  

Context. The halos of disk galaxies form a crucial connection between the galaxy disk and the intergalactic medium. Massive stars, H II regions, or dwarf galaxies located in the halos of galaxies are potential tracers of recent accretion and/or outflows of gas, and are additional contributors to the photon field and the gas phase metallicity. Aims. We investigate the nature and origin of a star-forming dwarf galaxy candidate located in the halo of the edge-on Virgo galaxy NGC 4634 with a projected distance of 1.4 kpc and a Hα star formation rate of ∼4.7 × 10−3 M⊙ yr−1 in order to increase our understanding of these disk-halo processes. Methods. With optical long-slit spectra we measured fluxes of optical nebula emission lines to derive the oxygen abundance 12 + log(O/H) of an H II region in the disk of NGC 4634 and in the star-forming dwarf galaxy candidate. Abundances derived from optical long-slit data and from Hubble Space Telescope (HST) r-band data, Hα data, Giant Metrewave Radio Telescope (GMRT) H I data, and photometry of SDSS and GALEX data were used for further analysis. With additional probes of the luminosity–metallicity relation in the B-band from the Hα-luminosity, the H I map, and the relative velocities, we are able to constrain a possible origin of the dwarf galaxy candidate. Results. The high oxygen abundance (12 + log(O/H) ≈ 8.72) of the dwarf galaxy candidate leads to the conclusion that it was formed from pre-enriched material. Analysis of auxiliary data shows that the dwarf galaxy candidate is composed of material originating from NGC 4634. We cannot determine whether this material has been ejected tidally or through other processes, which makes the system highly interesting for follow up observations.

2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


2020 ◽  
Vol 494 (4) ◽  
pp. 5985-5991
Author(s):  
T Cheng ◽  
D L Clements ◽  
J Greenslade ◽  
J Cairns ◽  
P Andreani ◽  
...  

ABSTRACT We measure the 850-μm source densities of 46 candidate protoclusters selected from the Planck high-z catalogue (PHz) and the Planck Catalogue of Compact Sources (PCCS) that were followed up with Herschel-SPIRE and SCUBA-2. This paper aims to search for overdensities of 850-μm sources in order to select the fields that are most likely to be genuine protoclusters. Of the 46 candidate protoclusters, 25 have significant overdensities (>5 times the field counts), 11 have intermediate overdensities (3–5 times the field counts), and 10 have no overdensity (<3 times the field counts) of 850-μm sources. We find that the enhanced number densities are unlikely to be the result of sample variance. Compared with the number counts of another sample selected from Planck’s compact source catalogues, this [PHz + PCCS]-selected sample has a higher fraction of candidate protoclusters with significant overdensities, though both samples show overdensities of 850-μm sources above intermediate level. Based on the estimated star formation rate densities (SFRDs), we suggest that both samples can efficiently select protoclusters with starbursting galaxies near the redshift at which the global field SFRD peaks (2 < z < 3). Based on the confirmation of overdensities found here, future follow-up observations on other PHz targets may greatly increase the number of genuine dusty star-forming galaxy-rich clusters/protoclusters.


2020 ◽  
Vol 25 (2) ◽  
pp. 55-60
Author(s):  
Daya Nidhi Chhatkuli ◽  
Sanjaya Paudel ◽  
Binil Aryal

We present a study of the Sloan Digital all Sky Survey Data Release 12 (SDSS DR12) optical spectra of an interacting dwarf galaxy NGC 2604 that has redshift 0.0069. Thirteen characteristic emission lines were identified in the wavelength range of 3885 Å to 6742 Å, the strongest line was due to Hα emission with a value of emission-line flux 1538.8 erg/s/cm2/Å. The other twelve emission lines were observed because of OI doublet, Hβ, Hγ, Hδ, OIII doublet, HeI, SII doublet and NII doublet transitions. Eleven characteristic lines agreed perfectly with the Gaussian distribution with greater than 99.9 % coefficient of regression. However, full-width half maximum (FWHM) was found to be less than 5 Å. No absorption metallic lines were observed in the spectra which indicates that the galaxy was either newly formed. The line metallicity of the galaxy was found to be 8.4 dex and the extinction coefficient was 0.2134. The star formation rate due to Hα emission after extinction correction was found to be 0.0927 Mʘ year -1 which is almost double of the value (0.057 Mʘ year -1) before correction.


BIBECHANA ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 100-107
Author(s):  
Daya Nidhi Chhatkuli ◽  
Sanjaya Paudel ◽  
Binil Aryal

We present a spectroscopic study of an interacting emission-line dwarf galaxy SDSS J134326.99+431118.7. We analyzed eight-strong emission lines of wavelength in a range of 3902.1Å to 6619.1Å. Among them, the strongest emission line is OIII, with an intensity of 1043.6 x 10-17 erg/s/cm2/Å. These characteristic lines show a perfect Gaussian fit with a coefficient of regression greater than 98%, where the derived full width half maximum (FWHM) is less than 3.8 Å. The line ratio between Ha  and Hb, (Ha/ Hb), is  2.73. This suggests that the galaxy is a starburst galaxy. Star Formation Rate (SFR) of the galaxy derived from Ha  emission line flux is 0.019  and emission line metallicity derived from flux ratio between NII and Ha is 7.85 dex. These morphological and physical properties of SDSSJ134326.99+431118.7 are very similar to those of a typical Blue Compact Dwarf (BCD) galaxy. We conclude that we have presented another evidence of forming a BCD-type galaxy through a merger. BIBECHANA 18 (2021) 100-107


2019 ◽  
Vol 489 (2) ◽  
pp. 2792-2818 ◽  
Author(s):  
A Zanella ◽  
E Le Floc’h ◽  
C M Harrison ◽  
E Daddi ◽  
E Bernhard ◽  
...  

ABSTRACT We investigate the contribution of clumps and satellites to the galaxy mass assembly. We analysed spatially resolved HubbleSpace Telescope observations (imaging and slitless spectroscopy) of 53 star-forming galaxies at z ∼ 1–3. We created continuum and emission line maps and pinpointed residual ‘blobs’ detected after subtracting the galaxy disc. Those were separated into compact (unresolved) and extended (resolved) components. Extended components have sizes ∼2 kpc and comparable stellar mass and age as the galaxy discs, whereas the compact components are 1.5 dex less massive and 0.4 dex younger than the discs. Furthermore, the extended blobs are typically found at larger distances from the galaxy barycentre than the compact ones. Prompted by these observations and by the comparison with simulations, we suggest that compact blobs are in situ formed clumps, whereas the extended ones are accreting satellites. Clumps and satellites enclose, respectively, ∼20 per cent and ≲80 per cent of the galaxy stellar mass, ∼30 per cent and ∼20 per cent of its star formation rate. Considering the compact blobs, we statistically estimated that massive clumps (M⋆ ≳ 109 M⊙) have lifetimes of ∼650 Myr, and the less massive ones (108 < M⋆ < 109 M⊙) of ∼145 Myr. This supports simulations predicting long-lived clumps (lifetime ≳ 100 Myr). Finally, ≲30 per cent (13 per cent) of our sample galaxies are undergoing single (multiple) merger(s), they have a projected separation ≲10 kpc, and the typical mass ratio of our satellites is 1:5 (but ranges between 1:10 and 1:1), in agreement with literature results for close pair galaxies.


2020 ◽  
Vol 499 (1) ◽  
pp. L105-L110
Author(s):  
R Marques-Chaves ◽  
J Álvarez-Márquez ◽  
L Colina ◽  
I Pérez-Fournon ◽  
D Schaerer ◽  
...  

ABSTRACT We report the discovery of BOSS-EUVLG1 at z = 2.469, by far the most luminous, almost un-obscured star-forming galaxy known at any redshift. First classified as a QSO within the Baryon Oscillation Spectroscopic Survey, follow-up observations with the Gran Telescopio Canarias reveal that its large luminosity, MUV ≃ −24.40 and log(LLyα/erg s–1) ≃ 44.0, is due to an intense burst of star formation, and not to an active galactic nucleus or gravitational lensing. BOSS-EUVLG1 is a compact (reff ≃ 1.2 kpc), young (4–5 Myr) starburst with a stellar mass log(M*/M⊙) = 10.0 ± 0.1 and a prodigious star formation rate of ≃1000 M⊙ yr−1. However, it is metal- and dust-poor [12 + log(O/H) = 8.13 ± 0.19, E(B – V) ≃ 0.07, log(LIR/LUV) &lt; −1.2], indicating that we are witnessing the very early phase of an intense starburst that has had no time to enrich the ISM. BOSS-EUVLG1 might represent a short-lived (&lt;100 Myr), yet important phase of star-forming galaxies at high redshift that has been missed in previous surveys. Within a galaxy evolutionary scheme, BOSS-EUVLG1 could likely represent the very initial phases in the evolution of massive quiescent galaxies, even before the dusty star-forming phase.


2020 ◽  
Vol 499 (4) ◽  
pp. 4940-4960
Author(s):  
Henry R M Zovaro ◽  
Robert Sharp ◽  
Nicole P H Nesvadba ◽  
Lisa Kewley ◽  
Ralph Sutherland ◽  
...  

ABSTRACT Local examples of jet-induced star formation lend valuable insight into its significance in galaxy evolution and can provide important observational constraints for theoretical models of positive feedback. Using optical integral field spectroscopy, we present an analysis of the ISM conditions in Minkowski’s object (z = 0.0189), a peculiar star-forming dwarf galaxy located in the path of a radio jet from the galaxy NGC 541. Full spectral fitting with ppxf indicates that Minkowski’s object primarily consists of a young stellar population $\sim \! 10\, \rm Myr$ old, confirming that the bulk of the object’s stellar mass formed during a recent jet interaction. Minkowski’s object exhibits line ratios largely consistent with star formation, although there is evidence for a low level ($\lesssim \! 15 \, \rm per \, cent$) of contamination from a non-stellar ionizing source. Strong-line diagnostics reveal a significant variation in the gas-phase metallicity within the object, with $\log \left(\rm O / H \right) + 12$ varying by $\sim \! 0.5\, \rm dex$, which cannot be explained by in-situ star formation, an enriched outflow from the jet, or enrichment of gas in the stellar bridge between NGC 541 and NGC 545/547. We hypothesize that Minkowski’s object either (i) was formed as a result of jet-induced star formation in pre-existing gas clumps in the stellar bridge, or (ii) is a gas-rich dwarf galaxy that is experiencing an elevation in its star formation rate due to a jet interaction, and will eventually redden and fade, becoming an ultradiffuse galaxy as it is processed by the cluster.


2002 ◽  
Vol 207 ◽  
pp. 390-400
Author(s):  
Bruce G. Elmegreen

Star formation is triggered in essentially three ways: (1) the pressures from existing stars collect and squeeze nearby dense gas into gravitationally unstable configurations, (2) random compression from supersonic turbulence makes new clouds and clumps, some of which are gravitationally unstable, and (3) gravitational instabilities in large parts of a galaxy disk make giant new clouds and spiral arms that fragment by the other two processes into a hierarchy of smaller star-forming pieces. Examples of each process are given. Most dense clusters in the solar neighborhood were triggered by external stellar pressures. Most clusters and young stars on larger scales are organized into hierarchical patterns with an age-size correlation, suggestive of turbulence. Beads-on-a-string of star formation in spiral arms and resonance rings indicate gravitational instabilities. The turbulence model explains the mass spectrum of clusters, the correlation between the fraction of star formation in the form of clusters and the star formation rate, found by Larsen & Richtler, and the correlation between the size of the largest cluster and the number of clusters in a galaxy.


2019 ◽  
Vol 628 ◽  
pp. A24 ◽  
Author(s):  
K. George ◽  
S. Subramanian ◽  
K. T. Paul

The suppression of star formation in the inner kiloparsec regions of barred disk galaxies due to the action of bars is known as bar quenching. We investigate here the significance of bar quenching in the global quenching of star formation in the barred galaxies and their transformation to passive galaxies in the local Universe. We do this by measuring the offset of quenched barred galaxies from star-forming main sequence galaxies in the star formation rate-stellar mass plane and comparing it with the length of the bar, which is considered as a proxy of bar quenching. We constructed the star formation rate-stellar mass plane of 2885 local Universe face-on strong barred disk galaxies (z <  0.06) identified by Galaxy Zoo. The barred disk galaxies studied here fall on the star formation main sequence relation with a significant scatter for galaxies above stellar mass 1010.2M⊙. We found that 34.97% galaxies are within the intrinsic scatter (0.3 dex) of the main sequence relation, with a starburst population of 10.78% (above the 0.3 dex) and a quenched population of 54.25% (below the −0.3 dex) of the total barred disk galaxies in our sample. Significant neutral hydrogen (MHI > 109M⊙ with log MHI/M⋆ ∼ −1.0 to −0.5) is detected in the quenched barred galaxies with a similar gas content to that of the star-forming barred galaxies. We found that the offset of the quenched barred galaxies from the main sequence relation is not dependent on the length of the stellar bar. This implies that the bar quenching may not contribute significantly to the global quenching of star formation in barred galaxies. However, this observed result could also be due to other factors such as the dissolution of bars over time after star formation quenching, the effect of other quenching processes acting simultaneously, and/or the effects of environment.


Sign in / Sign up

Export Citation Format

Share Document