scholarly journals A contribution of star-forming clumps and accreting satellites to the mass assembly of z ∼ 2 galaxies

2019 ◽  
Vol 489 (2) ◽  
pp. 2792-2818 ◽  
Author(s):  
A Zanella ◽  
E Le Floc’h ◽  
C M Harrison ◽  
E Daddi ◽  
E Bernhard ◽  
...  

ABSTRACT We investigate the contribution of clumps and satellites to the galaxy mass assembly. We analysed spatially resolved HubbleSpace Telescope observations (imaging and slitless spectroscopy) of 53 star-forming galaxies at z ∼ 1–3. We created continuum and emission line maps and pinpointed residual ‘blobs’ detected after subtracting the galaxy disc. Those were separated into compact (unresolved) and extended (resolved) components. Extended components have sizes ∼2 kpc and comparable stellar mass and age as the galaxy discs, whereas the compact components are 1.5 dex less massive and 0.4 dex younger than the discs. Furthermore, the extended blobs are typically found at larger distances from the galaxy barycentre than the compact ones. Prompted by these observations and by the comparison with simulations, we suggest that compact blobs are in situ formed clumps, whereas the extended ones are accreting satellites. Clumps and satellites enclose, respectively, ∼20 per cent and ≲80 per cent of the galaxy stellar mass, ∼30 per cent and ∼20 per cent of its star formation rate. Considering the compact blobs, we statistically estimated that massive clumps (M⋆ ≳ 109 M⊙) have lifetimes of ∼650 Myr, and the less massive ones (108 < M⋆ < 109 M⊙) of ∼145 Myr. This supports simulations predicting long-lived clumps (lifetime ≳ 100 Myr). Finally, ≲30 per cent (13 per cent) of our sample galaxies are undergoing single (multiple) merger(s), they have a projected separation ≲10 kpc, and the typical mass ratio of our satellites is 1:5 (but ranges between 1:10 and 1:1), in agreement with literature results for close pair galaxies.

2018 ◽  
Vol 615 ◽  
pp. A27 ◽  
Author(s):  
R. López Fernández ◽  
R. M. González Delgado ◽  
E. Pérez ◽  
R. García-Benito ◽  
R. Cid Fernandes ◽  
...  

We investigate the cosmic evolution of the absolute and specific star formation rate (SFR, sSFR) of galaxies as derived from a spatially resolved study of the stellar populations in a set of 366 nearby galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey. The sample spans stellar masses from M⋆ ~ 109 to 1012M⊙ and a wide range of Hubble types. The analysis combines images obtained with the Galaxy Evolution Explorer (GALEX; far-ultraviolet and near-ultraviolet) and Sloan Digital Sky Survey (SDSS; u, g, r, i, z) with the 4000 Å break, Hβ, and [MgFe]′ indices measured from the CALIFA data cubes to constrain parametric models for the star formation history (SFH), which are then used to study the cosmic evolution of the SFR density (ρSFR), the sSFR, the main sequence of star formation (MSSF), and the stellar mass density (ρ⋆). Several SFH laws are used to fit the observational constrains. A delayed-τ model, SFR ∝ (t0 − t)exp(−(t0 − t)∕τ), provides the best results, in good agreement with those obtained from cosmological surveys. Our main results from this model are that (a) the mass currently in the inner (≤0.5 half-light radius, HLR) regions formed at earlier epochs than the mass in the outer (1–2 HLR) regions of galaxies. The time since the onset of the star formation is longer in the inner regions (t0 ~ 13−10 Gyr) than in the outer ones (t0 ~ 11−9 Gyr) for all the morphologies, while the e-folding timescale τ in the inner region is similar to or shorter than in the outer regions. These results confirm that galaxies of any Hubble type grow inside-out. (b) The sSFR declines rapidly as the Universe evolves, and faster for early- than for late-type galaxies, and for the inner than for the outer regions of galaxies. (c) The evolution of ρSFR and ρ⋆ agrees well with results from cosmological surveys, particularly with the recent results from the Galaxy And Mass Assembly (GAMA), the G10-Cosmological Evolution Survey (COSMOS), and the 3D Hubble Space Telescope (HST) survey. At low redshift, z ≤ 0.5, most star formation takes place in the outer regions of late spiral galaxies, while at z > 2, the inner regions of the progenitors of the current E and S0 are the main contributors to ρSFR. (d) Similarly, the inner regions of galaxies are the main contributor to ρ⋆ at z > 0.5, growing their mass faster than the outer regions, with a lookback time at 50% ρ⋆ of t50 ~ 9 and 6 Gyr for the inner and outer regions. (e) The MSSF follows a power law at high redshift, with the slope evolving with time but always remaining sub-linear, in good agreement with the Illustris simulation. (f) In agreement with galaxy surveys at different redshifts, the average SFH of CALIFA galaxies indicates that galaxies grow their mass mainly in a mode that is well represented by a delayed-τ model, with the peak at z ~ 2 and an e-folding time of ~3.9 Gyr.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


2020 ◽  
Vol 499 (1) ◽  
pp. 631-652
Author(s):  
J A Vázquez-Mata ◽  
J Loveday ◽  
S D Riggs ◽  
I K Baldry ◽  
L J M Davies ◽  
...  

ABSTRACT How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology, and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellites LF and SMF, respectively, show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift z ≈ 0.3 relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.


2020 ◽  
Vol 499 (1) ◽  
pp. 948-956
Author(s):  
S M Randriamampandry ◽  
M Vaccari ◽  
K M Hess

ABSTRACT We investigate the relationship between the environment and the galaxy main sequence (the relationship between stellar mass and star formation rate), as well as the relationship between the environment and radio luminosity ($P_{\rm 1.4\, GHz}$), to shed new light on the effects of the environment on galaxies. We use the VLA-COSMOS 3-GHz catalogue, which consists of star-forming galaxies and quiescent galaxies (active galactic nuclei) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of star-forming galaxies with respect to the main-sequence consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 ≤ z ≤ 1.2. Our results corroborate that the star formation rate is declining with cosmic time, which is consistent with the literature. We find that the slope of the main sequence for different z and M* bins is shallower than the main-sequence consensus, with a gradual evolution towards higher redshift bins, irrespective of environment. We see no trends for star formation rate in either environment or galaxy type, given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of the main sequence at high stellar masses for our sample.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2019 ◽  
Vol 488 (3) ◽  
pp. 3929-3948 ◽  
Author(s):  
M Cano-Díaz ◽  
V Ávila-Reese ◽  
S F Sánchez ◽  
H M Hernández-Toledo ◽  
A Rodríguez-Puebla ◽  
...  

ABSTRACT We study the global star formation rate (SFR) versus stellar mass (M*) correlation, and the spatially resolved SFR surface density (ΣSFR) versus stellar mass surface density (Σ*) correlation, in a sample of ∼2000 galaxies from the MaNGA MPL-5 survey. We classify galaxies and spatially resolved areas into star forming and retired according to their ionization processes. We confirm the existence of a star-forming main sequence (SFMS) for galaxies and spatially resolved areas, and show that they have the same nature, with the global as a consequence of the local one. The latter presents a bend below a limit Σ* value, ≈3 × 107 M$\odot$ kpc−2, which is not physical. Using only star-forming areas (SFAs) above this limit, a slope and a scatter of ≈1 and ≈0.27 dex are determined. The retired galaxies/areas strongly segregate from their respective SFMSs, by ∼−1.5 dex on average. We explore how the global/local SFMSs depend on galaxy morphology, finding that for star-forming galaxies and SFAs, there is a trend to lower values of star formation activity with earlier morphological types, which is more pronounced for the local SFMS. The morphology not only affects the global SFR due to the diminish of SFAs with earlier types, but also affects the local SF process. Our results suggest that the local SF at all radii is established by some universal mechanism partially modulated by morphology. Morphology seems to be connected to the slow aging and sharp decline of the SF process, and on its own it may depend on other properties as the environment.


2015 ◽  
Vol 11 (S315) ◽  
pp. 236-239
Author(s):  
Johan H. Knapen ◽  
Mauricio Cisternas ◽  
Miguel Querejeta

AbstractWe investigate the influence of interactions on the star formation by studying a sample of almost 1500 of the nearest galaxies, all within a distance of ~45 Mpc. We define the massive star formation rate (SFR), as measured from far-IR emission, and the specific star formation rate (SSFR), which is the former quantity normalized by the stellar mass of the galaxy, and explore their distribution with morphological type and with stellar mass. We then calculate the relative enhancement of these quantities for each galaxy by normalizing them by the median SFR and SSFR values of individual control populations of similar non-interacting galaxies. We find that both SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is, however, moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers). The SFR and SSFR are enhanced statistically in the population, but in most individual interacting galaxies they are not enhanced at all. We discuss how those galaxies with the largest SFR and/or SSFR enhancement can be defined as starbursts. We argue that this study, based on a representative sample of nearby galaxies, should be used to place constraints on studies based on samples of galaxies at larger distances.


2018 ◽  
Vol 620 ◽  
pp. A113 ◽  
Author(s):  
M. Argudo-Fernández ◽  
I. Lacerna ◽  
S. Duarte Puertas

Context. Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, active galactic nuclei (AGNs) also have a principal action therein. However, the connections between these three actors are still uncertain. Aims. In this work we investigate the effects of stellar mass and the large-scale structure (LSS) environment on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. Methods. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star-formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS, we separate galaxies into two groups, of low- and high mass, respectively, and use the tidal strength parameter to quantify the effects. Results. We found that AGN is strongly affected by stellar mass in “active” galaxies (namely late-type, blue, and star-forming), but that mass has no influence on “quiescent” galaxies (namely early-type, red, and quenched), at least for masses down to 1010 M⊙. In relation to the LSS, we found an increase in the fraction of star-forming nuclei galaxies with denser LSS in low-mass star-forming and red isolated galaxies. Regarding AGN, we find a clear increase in the fraction of AGNs with denser environment in quenched and red isolated galaxies, independently of the stellar mass. Conclusions. Active galactic nuclei activity appears to be “mass triggered” in active isolated galaxies. This means that AGN activity is independent of the intrinsic properties of the galaxies, but is dependent on their stellar mass. On the other hand, AGN activity appears to be “environment triggered” in quiescent isolated galaxies, where the fraction of AGNs as a function of specific star formation rate and colour increases from void regions to denser LSS, independently of stellar mass.


2016 ◽  
Vol 11 (S321) ◽  
pp. 273-273
Author(s):  
C. Catalán-Torrecilla ◽  
A. Gil de Paz ◽  
A. Castillo-Morales ◽  
J. Méndez-Abreu ◽  
S. Pascual ◽  
...  

AbstractExploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hαobs + IR or UVobs + IR (Catalán-Torrecilla et al. 2015).Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy.2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their relative position to the star forming Main Sequence.


Sign in / Sign up

Export Citation Format

Share Document