scholarly journals Jiamusi pulsar observations

2018 ◽  
Vol 618 ◽  
pp. A186 ◽  
Author(s):  
P. F. Wang ◽  
J. L. Han ◽  
L. Han ◽  
J. H. Zhang ◽  
J. Q. Li ◽  
...  

Context. Pulsars scintillate. Dynamic spectra show brightness variation of pulsars in the time and frequency domain. Secondary spectra demonstrate the distribution of fluctuation power in the dynamic spectra. Aims. Dynamic spectra strongly depend on observational frequencies, but were often observed at frequencies lower than 1.5 GHz. Scintillation observations at higher frequencies help to constrain the turbulence feature of the interstellar medium over a wide frequency range and can detect the scintillations of more distant pulsars. Methods. Ten pulsars were observed at 2250 MHz (S-band) with the Jiamusi 66 m telescope to study their scintillations. Their dynamic spectra were first obtained, from which the decorrelation bandwidths and timescales of diffractive scintillation were then derived by autocorrelation. Secondary spectra were calculated by forming the Fourier power spectra of the dynamic spectra. Results. Most of the newly obtained dynamic spectra are at the highest frequency or have the longest time span of any published data for these pulsars. For PSRs B0540 + 23, B2324 + 60, and B2351 + 61, these were the first dynamic spectra ever reported. The frequency dependence of the scintillation parameters indicates that the intervening medium can rarely be ideally turbulent with a Kolmogorov spectrum. The thin-screen model worked well at S-band for the scintillation of PSR B1933 + 16. Parabolic arcs were detected in the secondary spectra of three pulsars, PSRs B0355 + 54, B0540 + 23, and B2154 + 40, all of which were asymmetrically distributed. The inverted arclets of PSR B0355 + 54 were seen to evolve along the main parabola within a continuous observing session of 12 h, from which the angular velocity of the pulsar was estimated. This was consistent with the measurement by very long baseline interferometry.

2017 ◽  
Vol 13 (S336) ◽  
pp. 201-206 ◽  
Author(s):  
Luca Moscadelli ◽  
Alberto Sanna ◽  
Ciriaco Goddi

AbstractImaging the inner few 1000 AU around massive forming stars, at typical distances of several kpc, requires angular resolutions of better than 0″.1. Very Long Baseline Interferometry (VLBI) observations of interstellar molecular masers probe scales as small as a few AU, whereas (new-generation) centimeter and millimeter interferometers allow us to map scales of the order of a few 100 AU. Combining these informations all together, it presently provides the most powerful technique to trace the complex gas motions in the proto-stellar environment. In this work, we review a few compelling examples of this technique and summarize our findings.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2662
Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.


2020 ◽  
Vol 493 (1) ◽  
pp. L81-L86 ◽  
Author(s):  
P Atri ◽  
J C A Miller-Jones ◽  
A Bahramian ◽  
R M Plotkin ◽  
A T Deller ◽  
...  

ABSTRACT Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network, we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI J1820+070, providing a model-independent distance to the source. Our parallax measurement of (0.348 ± 0.033) mas for MAXI J1820+070 translates to a distance of (2.96 ± 0.33) kpc. This distance implies that the source reached (15 ± 3) per cent of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity, and the mass of the black hole in MAXI J1820+070 to be (63 ± 3)°, (0.89 ± 0.09) c, and (9.2 ± 1.3) M⊙, respectively.


1999 ◽  
Vol 73 (7) ◽  
pp. 375-383 ◽  
Author(s):  
T. R. Emardson ◽  
G. Elgered ◽  
J. M. Johansson

2002 ◽  
Vol 12 ◽  
pp. 124-125 ◽  
Author(s):  
V. Dehant ◽  
M. Feissel ◽  
O. de Viron ◽  
M. Yseboodt ◽  
Ch. Bizouard

The recent theoretical developments have provided accurate series of nutations, which are close to the Very Long Baseline Interferometry (VLBI) data. At the milliarcsecond (mas) level, three series are available: MHB2000 (Mathews et al. 2000), FG2000 (Getino and Ferrándiz 2000), and SF2000 (Shirai and Fukushima 2000a,b) (see Dehant 2000, and in this volume, for more information and for a short description of these models).In the first part of our work we have compared these models with the (VLBI) observations (Ma et al. 2000) by computing rms of the residuals for several time intervals of measurements. We have concluded that these series have comparable precision.


Sign in / Sign up

Export Citation Format

Share Document