scholarly journals H2 chemistry in interstellar ices: the case of CO ice hydrogenation in UV irradiated CO:H2 ice mixtures

2018 ◽  
Vol 617 ◽  
pp. A87 ◽  
Author(s):  
K.-J. Chuang ◽  
G. Fedoseev ◽  
D. Qasim ◽  
S. Ioppolo ◽  
E. F. van Dishoeck ◽  
...  

Context. In dense clouds, hydrogenation reactions on icy dust grains are key in the formation of molecules, like formaldehyde, methanol, and complex organic molecules (COMs). These species form through the sequential hydrogenation of CO ice. Although molecular hydrogen (H2) abundances can be four orders of magnitude higher than those of free H-atoms in dense clouds, H2 surface chemistry has been largely ignored; several laboratory studies show that H2 does not actively participate in “non-energetic” ice chemistry because of the high activation energies required. Aims. For the example of CO ice hydrogenation, we experimentally investigated the potential role of H2 molecules on the surface chemistry when energetic processing (i.e., UV photolysis) is involved. We test whether additional hydrogenation pathways become available upon UV irradiation of a CO:H2 ice mixture and whether this reaction mechanism also applies to other chemical systems. Methods. Ultra-high vacuum (UHV) experiments were performed at 8–20 K. A pre-deposited solid mixture of CO:H2 was irradiated with UV-photons. Reflection absorption infrared spectroscopy (RAIRS) was used as an in situ diagnostic tool. Single reaction steps and possible isotopic effects were studied by comparing results from CO:H2 and CO:D2 ice mixtures. Results. After UV-irradiation of a CO:H2 ice mixture, two photon-induced products, HCO and H2CO, are unambiguously detected. The proposed reaction mechanism involves electronically excited CO in the following reaction steps: CO + hν→CO*, CO* + H2→HCO + H where newly formed H-atoms are then available for further hydrogenation reactions. The HCO formation yields have a strong temperature dependence for the investigated regime, which is most likely linked to the H2 sticking coefficient. Moreover, the derived formation cross section reflects a cumulative reaction rate that mainly determined by both the H-atom diffusion rate and initial concentration of H2 at 8–20 K and that is largely determined by the H2 sticking coefficient. Finally, the astronomical relevance of this photo-induced reaction channel is discussed.

2021 ◽  
Vol 9 ◽  
Author(s):  
Akira Kouchi ◽  
Yuki Kimura ◽  
Kensei Kitajima ◽  
Hiroyasu Katsuno ◽  
Hiroshi Hidaka ◽  
...  

The occurrence of hydrogen atom-ordered form of ice Ih, ice XI, in the outer Solar System has been discussed based on laboratory experiments because its ferroelectricity influences the physical processes in the outer Solar System. However, the formation of ice XI in that region is still unknown due to a lack of formation conditions at temperatures higher than 72 K and the effect of UV-rays on the phase transition from ice I to ice XI. As a result, we observed the UV-irradiation process on ice Ih and ice Ic using a newly developed ultra-high vacuum cryogenic transmission electron microscope. We found that ice Ih transformed to ice XI at temperatures between 75 and 140 K with a relatively small UV dose. Although ice Ic partially transformed to ice XI at 83 K, the rate of transformation was slower than for ice Ih. These findings point to the formation of ice XI at temperatures greater than 72 K via UV irradiation of ice I crystals in the Solar System; icy grains and the surfaces of icy satellites in the Jovian and Saturnian regions.


2013 ◽  
Vol 1533 ◽  
Author(s):  
Marie-Isabelle Baraton

ABSTRACTAmongst the list of the measurands specific to nanoparticles, size and shape definitely matter but surface chemistry is also often cited. While it is now largely recognized that surface composition, structure and reactivity are perhaps the dominant parameters controlling properties of nanoparticles, surface chemistry is one of the key characteristics of nanoparticles which is seldom or inappropriately evaluated, as it has been identified by international organizations (such as ISO, BIPM or CEN). The usual techniques for surface analysis of materials often require ultra-high vacuum (UHV) conditions and are hardly applicable to nanoparticles. Moreover, because the surface chemical composition and reactivity are dependent on the environmental conditions, the results obtained under UHV cannot be extrapolated to nanoparticles in ambient atmosphere or dispersed in liquids.After an analysis of the stakes and challenges in the surface characterization of nanoparticles and a very brief overview of the usual techniques for surface studies, this paper presents the performance of Fourier transform infrared (FTIR) spectroscopy to investigate surface chemical composition, surface reactivity and surface functionalization of nanoparticles. As illustrating examples, the results of the FTIR surface analysis of different kinds of ceramic nanoparticles are discussed with regard to several fields of applications.


2008 ◽  
Vol 125 (3-4) ◽  
pp. 236-242 ◽  
Author(s):  
J. Goering ◽  
U. Burghaus ◽  
B. W. Arey ◽  
O. Eidelman ◽  
A. Zak ◽  
...  

2020 ◽  
Vol 635 ◽  
pp. A199 ◽  
Author(s):  
K.-J. Chuang ◽  
G. Fedoseev ◽  
D. Qasim ◽  
S. Ioppolo ◽  
C. Jäger ◽  
...  

Context. Complex organic molecules (COMs) have been identified toward high- and low-mass protostars as well as molecular clouds, suggesting that these interstellar species originate from the early stage(s) of starformation. The reaction pathways resulting in COMs described by the formula C2HnO, such as acetaldehyde (CH3CHO), vinyl alcohol (CH2CHOH), ketene (CH2CO), and ethanol (CH3CH2OH), are still under debate. Several of these species have been detected in both translucent and dense clouds, where chemical processes are dominated by (ground-state) atom and radical surface reactions. Therefore, efficient formation pathways are needed to account for their appearance well before the so-called catastrophic CO freeze-out stage starts. Aims. In this work, we investigate the laboratory possible solid-state reactions that involve simple hydrocarbons and OH-radicals along with H2O ice under translucent cloud conditions (1 ≤ AV ≤ 5 and nH ~ 103 cm−3). We focus on the interactions of C2H2 with H-atoms and OH-radicals, which are produced along the H2O formation sequence on grain surfaces at 10 K. Methods. Ultra-high vacuum experiments were performed to study the surface chemistry observed during C2H2 + O2 + H codeposition, where O2 was used for the in situ generation of OH-radicals. These C2H2 experiments were extended by a set of similar experiments involving acetaldehyde (CH3CHO) – an abundant product of C2H2 + O2 + H codeposition. Reflection absorption infrared spectroscopy was applied to in situ monitor the initial and newly formed species. After that, a temperature-programmed desorption experiment combined with a quadrupole mass spectrometer was used as a complementary analytical tool. The IR and QMS spectral assignments were further confirmed in isotope labeling experiments using 18O2. Results. The investigated 10 K surface chemistry of C2H2 with H-atoms and OH-radicals not only results in semi and fully saturated hydrocarbons, such as ethylene (C2H4) and ethane (C2H6), but it also leads to the formation of COMs, such as vinyl alcohol, acetaldehyde, ketene, ethanol, and possibly acetic acid. It is concluded that OH-radical addition reactions to C2H2, acting as a molecular backbone, followed by isomerization (i.e., keto-enol tautomerization) via an intermolecular pathway and successive hydrogenation provides so far an experimentally unreported solid-state route for the formation of these species without the need of energetic input. The kinetics of acetaldehyde reacting with impacting H-atoms leading to ketene and ethanol is found to have a preference for the saturated product. The astronomical relevance of the reaction network introduced here is discussed.


1993 ◽  
Vol 334 ◽  
Author(s):  
Wen-Shryang Liu ◽  
Gregory B. Aupp

AbstractTemperature programmed desorption (TPD) studies in ultra high vacuum revealed that diethyltellurium (DETe) and dimethylcadmium (DMCd) adsorb weakly on clean Si(100) and desorb upon heating without decomposing. These precursors adsorb both weakly and strongly on CdTe(111)A, with DMCd exhibiting the stronger interaction with the surface than DETe. Dimethylcadmium partially decomposes to produce Cd adatoms; a large fraction of the excess Cd atoms desorb upon heating. In contrast, DETe desorbs without decomposing, suggesting that the rate limiting step in CdTe MOCVD on CdTe(111)A is surface decomposition of the tellurium alkyl.


2020 ◽  
Vol 493 (1) ◽  
pp. 821-829
Author(s):  
H Carrascosa ◽  
G A Cruz-Díaz ◽  
G M Muñoz Caro ◽  
E Dartois ◽  
Y-J Chen

ABSTRACT At the low temperatures found in the interior of dense clouds and circumstellar regions, along with H2O and smaller amounts of species such as CO, CO2 or CH3OH, the infrared features of CH4 have been observed on icy dust grains. Ultraviolet (UV) photons induce different processes in ice mantles, affecting the molecular abundances detected in the gas phase. This work aims to understand the processes that occur in a pure CH4 ice mantle subjected to UV irradiation. We studied photon-induced processes for the different photoproducts arising in the ice upon UV irradiation. Experiments were carried out in ISAC, an ultra-high vacuum chamber equipped with a cryostat and an F-type UV lamp reproducing the secondary UV field induced by cosmic rays in dense clouds. Infrared spectroscopy and quadrupole mass spectrometry were used to monitor the solid and gas phases, respectively, during the formation, irradiation and warming-up of the ice. Direct photodesorption of pure CH4 was not observed. UV photons form CHx· and H· radicals, leading to photoproducts such as H2, C2H2, C2H6 and C3H8. Evidence for the photodesorption of C2H2 and photochemidesorption of C2H6 and C3H8 was found; the latter species is so far the largest molecule found to photochemidesorb. 13CH4 experiments were also carried out to confirm the reliability of these results.


Sign in / Sign up

Export Citation Format

Share Document