scholarly journals Fraction of bolometric luminosity absorbed by dust in DustPedia galaxies

2018 ◽  
Vol 620 ◽  
pp. A112 ◽  
Author(s):  
S. Bianchi ◽  
P. De Vis ◽  
S. Viaene ◽  
A. Nersesian ◽  
A. V. Mosenkov ◽  
...  

Aims. We aim to study the fraction of stellar radiation absorbed by dust, fabs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1′), nearby (v ≤ 3000 km s−1) galaxies observed with the Herschel Space Observatory. Methods. For each object, we modelled the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the Code Investigating GALaxy Evolution (CIGALE). The value of fabs was obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. Results. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of fabs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of fabs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of fabs with stellar mass and specific star-formation rate. We confirm that the local Universe is missing the high fabs, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.

2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


2019 ◽  
Vol 622 ◽  
pp. A56 ◽  
Author(s):  
Leandro S. M. Cardoso ◽  
Jean Michel Gomes ◽  
Polychronis Papaderos

Context. Spectral population synthesis (PS) is a fundamental tool in extragalactic research that aims to decipher the assembly history of galaxies from their spectral energy distribution (SED). Whereas this technique has led to key insights into galaxy evolution in recent decades, star formation histories (SFHs) inferred therefrom have been plagued by considerable uncertainties stemming from inherent degeneracies and the fact that until recently all PS codes were restricted to purely stellar fits, neglecting the essential contribution of nebular emission (ne). With the advent of FADO (Fitting Analysis using Differential evolution Optimisation), the now possible self-consistent modelling of stellar and ne opens new routes to the exploration of galaxy SFHs. Aims. The main goal of this study is to quantitatively explore the accuracy to which FADO can recover physical and evolutionary properties of galaxies and compare its output with that from purely stellar PS codes. Methods. FADO and STARLIGHT were applied to synthetic SEDs that track the spectral evolution of stars and gas in extinction-free mock galaxies of solar metallicity that form their stellar mass (M⋆) according to different parametric SFHs. Spectral fits were computed for two different set-ups that approximate the spectral range of SDSS and CALIFA (V500) data, using up to seven libraries of simple stellar population spectra in the 0.005–2.5 Z⊙ metallicity range. Results. Our analysis indicates that FADO can recover the key physical and evolutionary properties of galaxies, such as M⋆ and mass- and light-weighted mean age and metallicity, with an accuracy better than 0.2 dex. This is the case even in phases of strongly elevated specific star formation rate (sSFR) and thus with considerable ne contamination (EW(Hα) >  103 Å). Likewise, population vectors from FADO adequately recover the mass fraction of stars younger than 10 Myr and older than 1 Gyr (M⋆<10Myr/M⋆total and M⋆>1Gyr/M⋆total, respectively) and reproduce with a high fidelity the observed Hα luminosity. As for STARLIGHT, our analysis documents a moderately good agreement with theoretical values only for evolutionary phases for which ne drops to low levels (EW(Hα) ≤ 60 Å) which, depending on the assumed SFH, correspond to an age between ∼0.1 Gyr and 2–4 Gyr. However, fits with STARLIGHT during phases of high sSFR severely overestimate both M⋆ and the mass-weighted stellar age, whereas strongly underestimate the light-weighted age and metallicity. Furthermore, our analysis suggests a subtle tendency of STARLIGHT to favour a bi-modal SFH, as well a slightly overestimated M⋆<10Myr/M⋆total, regardless of galaxy age. Whereas the amplitude of these biases can be reduced, depending on the specifics of the fitting procedure (e.g. accuracy and completeness of flagging emission lines, omission of the Balmer and Paschen jump from the fit), they persist even in the idealised case of a line-free SED comprising only stellar and nebular continuum emission. Conclusions. The insights from this study suggest that the neglect of nebular continuum emission in STARLIGHT and similar purely stellar PS codes could systematically impact M⋆ and SFH estimates for star-forming galaxies. We argue that these biases can be relevant in the study of a range of topics in extragalactic research, including the redshift-dependent slope of the star formation (SF) main sequence, the SF frosting hypothesis, and the regulatory role of supermassive black holes on the global SFH of galaxies.


2017 ◽  
Vol 836 (2) ◽  
pp. 185 ◽  
Author(s):  
F. S. Tabatabaei ◽  
E. Schinnerer ◽  
M. Krause ◽  
G. Dumas ◽  
S. Meidt ◽  
...  

2019 ◽  
Vol 490 (1) ◽  
pp. 832-847 ◽  
Author(s):  
Olivia C Jones ◽  
Michael J Sharp ◽  
Megan Reiter ◽  
Alec S Hirschauer ◽  
M Meixner ◽  
...  

ABSTRACT We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the Spitzer Space Telescope. We find over 500 new YSO candidates in seven massive star formation regions; these sources were selected using six colour–magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources, we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star formation rate of 0.039 $\mathrm{M}_{\odot } \, \mathrm{yr}^{-1}$. This is higher than star formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 μm emission from PAHs and warm dust. This analysis reveals an embedded high-mass star formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H ii and star-formation regions in the galaxy.


2020 ◽  
Vol 492 (4) ◽  
pp. 5592-5606 ◽  
Author(s):  
A Katsianis ◽  
V Gonzalez ◽  
D Barrientos ◽  
X Yang ◽  
C D P Lagos ◽  
...  

ABSTRACT There is a severe tension between the observed star formation rate (SFR)–stellar mass (M⋆) relations reported by different authors at z = 1–4. In addition, the observations have not been successfully reproduced by state-of-the-art cosmological simulations that tend to predict a factor of 2–4 smaller SFRs at a fixed M⋆. We examine the evolution of the SFR–M⋆ relation of z = 1–4 galaxies using the skirt simulated spectral energy distributions of galaxies sampled from the Evolution and Assembly of GaLaxies and their Environments simulations. We derive SFRs and stellar masses by mimicking different observational techniques. We find that the tension between observed and simulated SFR–M⋆ relations is largely alleviated if similar methods are used to infer the galaxy properties. We find that relations relying on infrared wavelengths (e.g. 24 ${\rm \, \mu m}$, MIPS – 24, 70, and 160 ${\rm \, \mu m}$ or SPIRE – 250, 350, and 500 ${\rm \, \mu m}$) have SFRs that exceed the intrinsic relation by 0.5 dex. Relations that rely on the spectral energy distribution fitting technique underpredict the SFRs at a fixed stellar mass by −0.5 dex at z ∼ 4 but overpredict the measurements by 0.3 dex at z ∼ 1. Relations relying on dust-corrected rest-frame ultraviolet luminosities, are flatter since they overpredict/underpredict SFRs for low/high star-forming objects and yield deviations from the intrinsic relation from 0.10 to −0.13 dex at z ∼ 4. We suggest that the severe tension between different observational studies can be broadly explained by the fact that different groups employ different techniques to infer their SFRs.


Author(s):  
A. Katsianis ◽  
E. Tescari ◽  
J. S. B. Wyithe

AbstractThe relation between the star-formation Rate and stellar mass (M⋆) of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, the observed amplitude of the star-formation rate—stellar mass relation has not been successfully reproduced in simulations, indicating either that the halo accretion history and baryonic physics are poorly understood/modelled or that observations contain biases. In this paper, we examine the evolution of the SFR −M⋆relation ofz~ 1–4 galaxies and display the inconsistency between observed relations that are obtained using different techniques. We employ cosmological hydrodynamic simulations from various groups which are tuned to reproduce a range of observables and compare these with a range of observed SFR −M⋆relations. We find that numerical results are consistent with observations that use Spectral Energy Distribution techniques to estimate star-formation rates, dust corrections, and stellar masses. On the contrary, simulations are not able to reproduce results that were obtained by combining only UV and IR luminosities (UV+IR). These imply star-formation rates at a fixed stellar mass that are larger almost by a factor of 5 than those of Spectral Energy Distribution measurements forz~ 1.5–4. Forz< 1.5, the results from simulations, Spectral Energy Distribution fitting techniques and IR+UV conversion agree well. We find that surveys that preferably select star-forming galaxies (e.g. by adopting Lyman-break or blue selection) typically predict a larger median/average star-formation rate at a fixed stellar mass especially for high mass objects, with respect to mass selected samples and hydrodynamic simulations. Furthermore, we find remarkable agreement between the numerical results from various authors who have employed different cosmological codes and run simulations with different resolutions. This is interesting for two reasons. (A) simulations can produce realistic populations of galaxies within representative cosmological volumes even at relatively modest resolutions. (B) It is likely that current numerical codes that rely on similar subgrid multiphase interstellar medium models and are tuned to reproduce statistical properties of galaxies, produce similar results for the SFR −M⋆relation by construction, regardless of resolution, box size and, to some extent, the adopted feedback prescriptions.


2018 ◽  
Vol 618 ◽  
pp. A28 ◽  
Author(s):  
L. Zappacosta ◽  
E. Piconcelli ◽  
F. Duras ◽  
C. Vignali ◽  
R. Valiante ◽  
...  

We present a 155 ks NuSTAR observation of the z ∼ 2 hot dust-obscured galaxy (hot DOG) W1835+4355. We extracted spectra from the two NuSTAR detectors and analyzed them jointly with the archival XMM-Newton PN and MOS spectra. We performed a spectroscopic analysis based on both phenomenological and physically motivated models employing toroidal and spherical geometry for the obscurer. In all the modelings, the source exhibits a Compton-thick column density NH ≳ 1024 cm−2, a 2–10 keV luminosity L2−10 ≈ 2 × 1045 erg s−1, and a prominent soft excess (∼5–10% of the primary radiative output), which translates into a luminosity ∼1044 erg s−1. We modeled the spectral energy distribution from 1.6 to 850 μm using a clumpy two-phase dusty torus model plus a modified blackbody to account for emission powered by star formation in the far-infrared. We employed several geometrical configurations consistent with those applied in the X-ray analysis. In all cases we obtained a bolometric luminosity Lbol ≈ 3–5 × 1047 erg s−1, which confirms the hyperluminous nature of this active galactic nucleus. Finally, we estimate a prodigious star formation rate of ∼3000 M⊙ yr−1, which is consistent with the rates inferred for z ≈ 2–4 hyperluminous type I quasars. The heavily obscured nature, together with Lbol, the ratio of X-ray to mid-infrared luminosity, the rest-frame optical morphology, and the host star formation rate are indicative of its evolutionary stage. We can interpret this as a late-stage merger event in the transitional, dust-enshrouded, evolutionary phase eventually leading to an optically bright AGN.


2019 ◽  
Vol 624 ◽  
pp. A80 ◽  
Author(s):  
A. Nersesian ◽  
E. M. Xilouris ◽  
S. Bianchi ◽  
F. Galliano ◽  
A. P. Jones ◽  
...  

Aims. Within the framework of the DustPedia project we investigate the properties of cosmic dust and its interaction with stellar radiation (originating from different stellar populations) for 814 galaxies in the nearby Universe, all observed by the Herschel Space Observatory. Methods. We take advantage of the widely used fitting code CIGALE, properly adapted to include the state-of-the-art dust model THEMIS. For comparison purposes, an estimation of the dust properties is provided by approximating the emission at far-infrared and sub-millimeter wavelengths with a modified blackbody. Using the DustPedia photometry we determine the physical properties of the galaxies, such as the dust and stellar mass, the star-formation rate, the bolometric luminosity, the unattenuated and the absorbed by dust stellar light, for both the old (> 200 Myr) and young (≤200 Myr) stellar populations. Results. We show how the mass of stars, dust, and atomic gas, as well as the star-formation rate and the dust temperature vary between galaxies of different morphologies and provide recipes to estimate these parameters given their Hubble stage (T). We find a mild correlation between the mass fraction of the small a-C(:H) grains with the specific star-formation rate. On average, young stars are very efficient in heating the dust, with absorption fractions reaching as high as ∼77% of the total unattenuated luminosity of this population. On the other hand, the maximum absorption fraction of old stars is ∼24%. Dust heating in early-type galaxies is mainly due to old stars, up to a level of ∼90%. Young stars progressively contribute more for “typical” spiral galaxies and they become the dominant source of dust heating for Sm-type and irregular galaxies, with ∼60% of their luminosity contributing to that purpose. Finally, we find a strong correlation of the dust heating fraction by young stars with morphology and the specific star-formation rate.


2014 ◽  
Vol 23 (3-4) ◽  
Author(s):  
T. Mineikis ◽  
V. Vansevičius

AbstractWe investigate the effects of stochasticity on the observed galaxy parameters by comparing our stochastic star formation two-dimensional (2-D) galaxy evolution models with the commonly used one-dimensional (1-D) models with smooth star formation. The 2-D stochastic models predict high variability of the star formation rate and the surface photometric parameters across the galactic disks and in time.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 184-185
Author(s):  
Elisabete da Cunha

AbstractThe star formation rate (SFR) is a fundamental property of galaxies and it is crucial to understand the build-up of their stellar content, their chemical evolution, and energetic feedback. The SFR of galaxies is typically obtained by observing the emission by young stellar populations directly in the ultraviolet, the optical nebular line emission from gas ionized by newly-formed massive stars, the reprocessed emission by dust in the infrared range, or by combining observations at different wavelengths and fitting the full spectral energy distributions of galaxies. In this brief review we describe the assumptions, advantages and limitations of different SFR indicators, and we discuss the most promising SFR indicators for high-redshift studies.


Sign in / Sign up

Export Citation Format

Share Document