scholarly journals Satellite dwarf galaxies: stripped but not quenched

2019 ◽  
Vol 624 ◽  
pp. A11 ◽  
Author(s):  
Loic Hausammann ◽  
Yves Revaz ◽  
Pascale Jablonka

In the Local Group, quenched gas-poor dwarfs galaxies are most often found close to the Milky Way and Andromeda, while star forming gas-rich ones are located at greater distances. This so-called morphology-density relation is often interpreted as the consequence of the ram pressure stripping of the satellites during their interaction with the Milky Way hot halo gas. While this process has been often investigated, self-consistent high resolution simulations were still missing. In this study, we have analysed the impact of both the ram pressure and tidal forces induced by a host galaxy on dwarf models as realistic as possible emerging from cosmological simulations. These models were re-simulated using both a wind tunnel and a moving box technique. The secular mass growth of the central host galaxy, as well as the gas density and temperature profiles of its hot halo have been taken into account. We show that while ram pressure is very efficient at stripping the hot and diffuse gas of the dwarf galaxies, it can remove their cold gas (T <  103 K) only in very specific conditions. Depending on the infall time of the satellites relatively to the build-up stage of the massive host, star formation can thus be prolonged instead of being quenched. This is the direct consequence of the clumpy nature of the cold gas and the thermal pressure the hot gas exerts onto it. We discuss the possibility that the variety in satellite populations among Milky Way-like galaxies reflects their accretion histories.

2015 ◽  
Vol 11 (S317) ◽  
pp. 340-341
Author(s):  
Stefano Pasetto ◽  
Mark Cropper ◽  
Yutaka Fujita ◽  
Cesare Chiosi ◽  
Eva K. Grebel

AbstractA large amount (5 × 1010 M⊙) of hot gas is thought to exist in an extended (≈ 200 kpc) hot diffuse halo around the Milky Way. We investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of this gravitationally bound systems in this external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh- Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment, useful in observational applications as well as theoretical interpretations of numerical results. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system, thus investigating the detectability limits and relevance of these different effects for future observational projects. The theoretical framework developed has direct applications to the cases of our MW system as well as dwarf galaxies in galaxy clusters or any primordial gas-rich star cluster of stars orbiting within its host galaxy.


2015 ◽  
Vol 12 (S316) ◽  
pp. 171-172
Author(s):  
Stefano Pasetto ◽  
Mark Cropper ◽  
Yutaka Fujita ◽  
Cesare Chiosi ◽  
Eva K. Grebel

AbstractWe investigate the competitive role of the different dissipative phenomena acting on the onset of star formation of gravitationally bound systems in an external environment. Ram pressure, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and tidal forces are accounted for separately in an analytical framework and compared in their role in influencing the star forming regions. We present an analytical criterion to elucidate the dependence of star formation in a spherical stellar system on its surrounding environment. We consider the different signatures of these phenomena in synthetically realized colour-magnitude diagrams (CMDs) of the orbiting system thus investigating the detectability limits of these different effects for future observational projects and their relevance. The developed theoretical framework has direct applications to the cases of massive star clusters, dwarf galaxies in galaxy clusters and dwarf galaxies orbiting our Milky Way system, as well as any primordial gas-rich cluster of stars orbiting within its host galaxy.


2019 ◽  
Vol 630 ◽  
pp. A140 ◽  
Author(s):  
Donatella Romano ◽  
Francesco Calura ◽  
Annibale D’Ercole ◽  
C. Gareth Few

Context. The faintest Local Group galaxies found lurking in and around the Milky Way halo provide a unique test bed for theories of structure formation and evolution on small scales. Deep Subaru and Hubble Space Telescope photometry demonstrates that the stellar populations of these galaxies are old and that the star formation activity did not last longer than 2 Gyr in these systems. A few mechanisms that may lead to such a rapid quenching have been investigated by means of hydrodynamic simulations, but these have not provided any final assessment so far. Aims. This is the first in a series of papers aimed at analyzing the roles of stellar feedback, ram pressure stripping, host-satellite tidal interactions, and reionization in cleaning the lowest mass Milky Way companions of their cold gas using high-resolution, three-dimensional hydrodynamic simulations. Methods. We simulated an isolated ultrafaint dwarf galaxy loosely modeled after Boötes I, and examined whether or not stellar feedback alone could drive a substantial fraction of the ambient gas out from the shallow potential well. Results. In contrast to simple analytical estimates, but in agreement with previous hydrodynamical studies, we find that most of the cold gas reservoir is retained. Conversely, a significant amount of the metal-enriched stellar ejecta crosses the boundaries of the computational box with velocities exceeding the local escape velocity and is, thus, likely lost from the system. Conclusions. Although the total energy output from multiple supernova explosions exceeds the binding energy of the gas, no galactic-scale outflow develops in our simulations and as such, most of the ambient medium remains trapped within the weak potential well of the model galaxy. It seems thus unavoidable that to explain the dearth of gas in ultrafaint dwarf galaxies, we will have to resort to environmental effects. This will be the subject of a forthcoming paper.


2004 ◽  
Vol 217 ◽  
pp. 452-457 ◽  
Author(s):  
M. Bureau ◽  
F. Walter ◽  
J. van Gorkom ◽  
C. Carignan

Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3σ column density of 1019 atom cm−2 and a 6σ limiting mass of 1.5 × 105M⊙.


2020 ◽  
Vol 501 (2) ◽  
pp. 2363-2377
Author(s):  
Alan W McConnachie ◽  
Clare R Higgs ◽  
Guillaume F Thomas ◽  
Kim A Venn ◽  
Patrick Côté ◽  
...  

ABSTRACT We measure systemic proper motions for distant dwarf galaxies in the Local Group and investigate if these isolated galaxies have ever had an interaction with the Milky Way or M31. We cross-match photometry of isolated, star-forming, dwarf galaxies in the Local Group, taken as part of the Solo survey, with astrometric measurements from Gaia Data Release 2. We find that NGC 6822, Leo A, IC 1613, and WLM have sufficient supergiants with reliable astrometry to derive proper motions. An additional three galaxies (Leo T, Eridanus 2, and Phoenix) are close enough that their proper motions have already been derived using red giant branch stars. Systematic errors in Gaia DR2 are significant for NGC 6822, IC 1613, and WLM. We explore the orbits for these galaxies, and conclude that Phoenix, Leo A, and WLM are unlikely to have interacted with the Milky Way or M31, unless these large galaxies are very massive (${\gtrsim}1.6 \times 10^{12}\, \mathrm{M}_\odot$). We rule out a past interaction of NGC 6822 with M31 at ${\sim}99.99{{\ \rm per\ cent}}$ confidence, and find there is a &lt;10 per cent chance that NGC 6822 has had an interaction with the Milky Way. We examine the likely origins of NGC 6822 in the periphery of the young Local Group, and note that a future interaction of NGC 6822 with the Milky Way or M31 in the next 4 Gyr is essentially ruled out. Our measurements indicate that future Gaia data releases will provide good constraints on the interaction history for the majority of these galaxies.


2019 ◽  
Vol 626 ◽  
pp. A14 ◽  
Author(s):  
C. Maier ◽  
M. Hayashi ◽  
B. L. Ziegler ◽  
T. Kodama

Aims. Cluster environments at z <  0.5 were found to increase the gas metallicities of galaxies which enter inner regions of the clusters where the density of the intracluster medium is high enough to remove their hot halo gas by ram-pressure stripping effects and to stop the inflow of pristine gas. To extend these studies to z >  1, the most massive clusters known at these redshifts are the sites where these environmental effects should be more pronounced and more easily observed with present day telescopes. Methods. We explore the massive cluster XMMXCS J2215.9−1738 at z ∼ 1.5 with KMOS spectroscopy of Hα and [N II] λ 6584 covering a region that corresponds to about one virial radius. Using published spectroscopic redshifts of 108 galaxies in and around the cluster we computed the location of galaxies in the projected velocity-versus-position phase-space to separate our cluster sample into a virialized region of objects accreted longer ago (roughly inside half R200) and a region of infalling galaxies. We measured oxygen abundances for ten cluster galaxies with detected [N II] λ 6584 lines in the individual galaxy spectra and compared the mass–metallicity relation of the galaxies inside half R200 with the infalling galaxies and a field sample at similar redshifts. Results. We find that the oxygen abundances of individual z ∼ 1.5 star-forming cluster galaxies inside half R200 are comparable, at the respective stellar mass, to the higher local SDSS metallicity values. We compare our measurements with a field galaxy sample from the KMOS3D survey at similar redshifts. We find that the [N II] λ 6584/Hα line ratios inside half R200 are higher by 0.2 dex and that the resultant metallicities of the galaxies in the inner part of the cluster are higher by about 0.1 dex, at a given mass, than the metallicities of infalling galaxies and of field galaxies at z ∼ 1.5. The enhanced metallicities of cluster galaxies at z ∼ 1.5 inside 0.5R200 indicate that the density of the intracluster medium in this massive cluster becomes high enough toward the cluster center such that the ram pressure exceeds the restoring pressure of the hot gas reservoir of cluster galaxies. This can remove the gas reservoir and initiate quenching; although the galaxies continue to form stars, albeit at slightly lower rates, using the available cold gas in the disk which is not stripped.


2019 ◽  
Vol 488 (1) ◽  
pp. 685-695 ◽  
Author(s):  
M Mezcua ◽  
H Suh ◽  
F Civano

Abstract Dwarf galaxies are thought to host the remnants of the early Universe seed black holes (BHs) and to be dominated by supernova feedback. However, recent studies suggest that BH feedback could also strongly impact their growth. We report the discovery of 35 dwarf galaxies hosting radio active galactic nucleus (AGN) out to redshift ∼3.4, which constitutes the highest redshift sample of AGNs in dwarf galaxies. The galaxies are drawn from the VLA-COSMOS 3 GHz Large Project and all are star forming. After removing the contribution from star formation to the radio emission, we find a range of AGN radio luminosities of $L^\mathrm{AGN}_\mathrm{1.4\, GHz} \sim 10^{37}$–1040 erg s−1. The bolometric luminosities derived from the fit of their spectral energy distribution are ≳1042 erg s−1, in agreement with the presence of AGNs in these dwarf galaxies. The 3 GHz radio emission of most of the sources is compact and the jet powers range from Qjet ∼ 1042 to 1044 erg s−1. These values, as well as the finding of jet efficiencies ≥10  per cent in more than 50 per cent of the sample, indicate that dwarf galaxies can host radio jets as powerful as those of massive radio galaxies whose jet mechanical feedback can strongly affect the formation of stars in the host galaxy. We conclude that AGN feedback can also have a very strong impact on dwarf galaxies, either triggering or hampering star formation and possibly the material available for BH growth. This implies that those low-mass AGNs hosted in dwarf galaxies might not be the untouched relics of the early seed BHs, which has important implications for seed BH formation models.


2020 ◽  
Vol 501 (1) ◽  
pp. 62-77
Author(s):  
A Nuñez-Castiñeyra ◽  
E Nezri ◽  
J Devriendt ◽  
R Teyssier

ABSTRACT The interplay of star formation (SF) and supernova (SN) feedback in galaxy formation is a key element for understanding galaxy evolution. Since these processes occur at small scales, it is necessary to have sub-grid models that recover their evolution and environmental effects at the scales reached by cosmological simulations. In this work, we present the results of the Mochima simulation, where we simulate the same spiral galaxy inhabiting a Milky Way (MW) size halo in a cosmological environment changing the sub-grid models for SN feedback and SF. We test combinations of the Schmidt law and a multifreefall based SF with delayed cooling feedback or mechanical feedback. We reach a resolution of 35 pc in a zoom-in box of 36 Mpc. For this, we use the code $\rm{\small RAMSES}$ with the implementation of gas turbulence in time and trace the local hydrodynamical features of the star-forming gas. Finally, we compare the galaxies at redshift 0 with global and interstellar medium observations in the MW and local spiral galaxies. The simulations show successful comparisons with observations. Nevertheless, diverse galactic morphologies are obtained from different numerical implementations. We highlight the importance of detailed modelling of the SF and feedback processes, especially for simulations with a resolution that start to reach scales relevant for molecular cloud physics. Future improvements could alleviate the degeneracies exhibited in our simulated galaxies under different sub-grid models.


2020 ◽  
Vol 498 (1) ◽  
pp. 926-939
Author(s):  
Zhen Jiang ◽  
Jie Wang ◽  
Fenghui Zhang ◽  
Li-Xin Li ◽  
Lan Wang ◽  
...  

ABSTRACT Kilonovae are optical flashes produced in the aftermath of neutron star–neutron star mergers or neutron star–black hole mergers. In this work, we use the Millennium Simulation, combined with semi-analytic galaxy formation model gabe (Galaxy Assembly with Binary Evolution) to explore the cosmic event rate of kilonovae, and the properties of their host galaxies in a cosmological context. We find that model with supernova kick velocity of $V_{\rm kick}=0\, \, {\rm km}\, \, {\rm s}^{-1}$ fits the observation best, satisfying the preference for low kick velocity binary system in theoretical models. With $V_{\rm kick}=0\, \, {\rm km}\, \, {\rm s}^{-1}$, the cosmic event rate of NNMs and NBMs at z = 0 are 283 and $91\, \, {\rm Gpc}^{-3}\, \, {\rm yr}^{-1}$, respectively, marginally consistent with the constraint from LVC GWTC-1. For Milky Way-mass galaxies, we predict the NNM rate is $25.7^{+59.6}_{-7.1}\, {\rm Myr}^{-1}$, which is also in good agreement with the observed properties of binary neutron stars in the Milky Way. Taking all the kilonovae into account in the history of Milky Way-mass galaxies, we find that the averaged r-process elements yield (A &gt; 79) in an NNM/NBM event should be $0.01\, {\rm M}_\odot$ to be consistent with observation. We conclude that NGC 4993, the host galaxy of GW170817, is a typical host galaxy for NNMs. However, generally, NNMs and NBMs tend to reside in young, blue, star-forming, late-type galaxies, with stellar mass, and gaseous metallicity distribution peaking at $M_{\rm *}=10^{10.65}\, {\rm M}_\odot$ and 12 + log (O/H) = 8.72 − 8.85, respectively. By exploring the connection between kilonovae and their host galaxies in the cosmological background, it is promising to constrain model better when we have more events in the forthcoming future.


2022 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Bhavya Pardasani ◽  
Andrew Wetzel ◽  
Jenna Samuel

Abstract In order to investigate the role of the host halo in quenching satellite galaxies, we have characterized a single Milky Way-like host galaxy from the FIRE simulations from z = 0–1.76 by quantifying the gas density of the host halo environment with respect to distance from the host and galactocentric latitude. The gas density decreases with increasing distance from the host according to a broken power law. At earlier times (2–10 Gyr ago), the density in the inner regions of the host halo was enhanced relative to z = 0. Thus, earlier infalling satellites experienced more ram-pressure and were more efficiently quenched compared to later infalling satellites. We also find that in the inner halo (<150 kpc) the density is 2–3 times larger close to the plane of the host galaxy disk versus above or below the disk, so satellites that orbit at low galactocentric latitudes may be more efficiently quenched.


Sign in / Sign up

Export Citation Format

Share Document