scholarly journals Study of CS, SiO, and SiS abundances in carbon star envelopes: assessing their role as gas-phase precursors of dust

2019 ◽  
Vol 628 ◽  
pp. A62 ◽  
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo

Aims. We aim to determine the abundances of CS, SiO, and SiS in a large sample of carbon star envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in the surroundings of the central AGB star. Methods. We surveyed a sample of 25 carbon-rich AGB stars in the λ 2 mm band, more concretely in the J = 3−2 line of CS and SiO, and in the J = 7−6 and J = 8−7 lines of SiS, using the IRAM 30 m telescope. We performed excitation and radiative transfer calculations based on the large velocity gradient (LVG) method to model the observed lines of the molecules and to derive their fractional abundances in the observed envelopes. We also assessed the effect of infrared pumping in the excitation of the molecules. Results. We detected CS in all 25 targeted envelopes, SiO in 24 of them, and SiS in 17 sources. Remarkably, SiS is not detected in any envelope with a mass loss rate below 10−6 M⊙ yr−1 while it is detected in all envelopes with mass loss rates above that threshold. We found that CS and SiS have similar abundances in carbon star envelopes, while SiO is present with a lower abundance. We also found a strong correlation in which the denser the envelope, the less abundant are CS and SiO. The trend is however only tentatively seen for SiS in the range of high mass loss rates. Furthermore, we found a relation in which the integrated flux of the MgS dust feature at 30 μm increases as the fractional abundance of CS decreases. Conclusions. The decline in the fractional abundance of CS with increasing density could be due to gas-phase chemistry in the inner envelope or to adsorption onto dust grains. The latter possibility is favored by a correlation between the CS fractional abundance and the 30 μm feature, which suggests that CS is efficiently incorporated onto MgS dust around C-rich AGB stars. In the case of SiO, the observed abundance depletion with increasing density is most likely caused by an efficient incorporation onto dust grains. We conclude that CS, SiO (very likely), and SiS (tentatively) are good candidates to act as gas-phase precursors of dust in C-rich AGB envelopes.

2020 ◽  
Vol 641 ◽  
pp. A57
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo ◽  
L. Velilla-Prieto

Aims. We aim to determine the abundances of SiO, CS, SiS, SO, and SO2 in a large sample of oxygen-rich asymptotic giant branch (AGB) envelopes covering a wide range of mass loss rates to investigate the potential role that these molecules could play in the formation of dust in these environments. Methods. We surveyed a sample of 30 oxygen-rich AGB stars in the λ 2 mm band using the IRAM 30m telescope. We performed excitation and radiative transfer calculations based on the large velocity gradient method to model the observed lines of the molecules and to derive their fractional abundances in the observed envelopes. Results. We detected SiO in all 30 targeted envelopes, as well as CS, SiS, SO, and SO2 in 18, 13, 26, and 19 sources, respectively. Remarkably, SiS is not detected in any envelope with a mass loss rate below 10−6 M⊙ yr−1, whereas it is detected in all envelopes with mass loss rates above that threshold. From a comparison with a previous, similar study on C-rich sources, it becomes evident that the fractional abundances of CS and SiS show a marked differentiation between C-rich and O-rich sources, being two orders of magnitude and one order of magnitude more abundant in C-rich sources, respectively, while the fractional abundance of SiO turns out to be insensitive to the C/O ratio. The abundance of SiO in O-rich envelopes behaves similarly to C-rich sources, that is, the denser the envelope the lower its abundance. A similar trend, albeit less clear than for SiO, is observed for SO in O-rich sources. Conclusions. The marked dependence of CS and SiS abundances on the C/O ratio indicates that these two molecules form more efficiently in C- than O-rich envelopes. The decline in the abundance of SiO with increasing envelope density and the tentative one for SO indicate that SiO and possibly SO act as gas-phase precursors of dust in circumstellar envelopes around O-rich AGB stars.


1999 ◽  
Vol 191 ◽  
pp. 239-244 ◽  
Author(s):  
Takashi Kozasa ◽  
Hisato Sogawa

Crystallization of silicate has been investigated within the framework of dust formation in steady state gas outflows around oxygen–rich AGB stars, where silicates are locked not only into homogeneous silicate grains but also into the mantles of heterogeneous grains. Based on the thermal history of dust grains after their formation, the crystallization calculation results in no crystalline silicate for the mass loss rate Ṁ ≤ 2 × 10−5M⊙ yr−1. Only silicate in the mantles of heterogeneous grains can be crystallized for Ṁ ≥ 3 × 10−5M⊙ yr−1, while homogeneous silicate grains remain amorphous. The mass fraction of crystalline silicate increases with increasing Ṁ. The radiation transfer calculations confirm the appearance of an emission feature around 33.5 μm, taking olivine as a representative of crystalline silicates. On the other hand, the 10μm feature appears in absorption, being dominated by homogeneous silicate grains. These trends are consistent with the observations. Thus the crystalline silicate is a diagnostics of high mass loss rate at the late stage of AGB stellar evolution, reflecting the formation process of dust grains.


2019 ◽  
Vol 626 ◽  
pp. A100 ◽  
Author(s):  
S. Bladh ◽  
S. Liljegren ◽  
S. Höfner ◽  
B. Aringer ◽  
P. Marigo

Context. The stellar winds of asymptotic giant branch (AGB) stars are commonly attributed to radiation pressure on dust grains, formed in the wake of shock waves that arise in the stellar atmospheres. The mass loss due to these outflows is substantial, and modelling the dynamical properties of the winds is essential both for studies of individual stars and for understanding the evolution of stellar populations with low to intermediate mass. Aims. The purpose of this work is to present an extensive grid of dynamical atmosphere and wind models for M-type AGB stars, covering a wide range of relevant stellar parameters. Methods. We used the DARWIN code, which includes frequency-dependent radiation-hydrodynamics and a time-dependent description of dust condensation and evaporation, to simulate the dynamical atmosphere. The wind-driving mechanism is photon scattering on submicron-sized Mg2SiO4 grains. The grid consists of ~4000 models, with luminosities from L⋆ = 890 L⊙ to L⋆ = 40 000 L⊙ and effective temperatures from 2200 to 3400 K. For the first time different current stellar masses are explored with M-type DARWIN models, ranging from 0.75 M⊙ to 3 M⊙. The modelling results are radial atmospheric structures, dynamical properties such as mass-loss rates and wind velocities, and dust properties (e.g. grain sizes, dust-to-gas ratios, and degree of condensed Si). Results. We find that the mass-loss rates of the models correlate strongly with luminosity. They also correlate with the ratio L*∕M*: increasing L*∕M* by an order of magnitude increases the mass-loss rates by about three orders of magnitude, which may naturally create a superwind regime in evolution models. There is, however, no discernible trend of mass-loss rate with effective temperature, in contrast to what is found for C-type AGB stars. We also find that the mass-loss rates level off at luminosities higher than ~14 000 L⊙, and consequently at pulsation periods longer than ~800 days. The final grain radii range from 0.25 to 0.6 μm. The amount of condensed Si is typically between 10 and 40%, with gas-to-dust mass ratios between 500 and 4000.


1989 ◽  
Vol 131 ◽  
pp. 381-390
Author(s):  
G. R. Knapp

Molecular line observations show that some planetary nebulae are still only partially ionized and are surrounded by the remains of the mass loss envelope shed by the preceding AGB star. The mass loss rates and outflow velocities of these envelopes are similar to those of the cool winds from luminous AGB stars. Both the kinematics of carbon stars and observations of the molecular envelopes around young planetaries show that the carbon star progenitors have a wide range of ages and of mass loss rates. There is increasing evidence that a significant fraction of AGB stars are carbon stars and that these provide a substantial contribution to the total mass returned to the interstellar medium.


1999 ◽  
Vol 191 ◽  
pp. 561-566
Author(s):  
C. Loup ◽  
E. Josselin ◽  
M.-R. Cioni ◽  
H.J. Habing ◽  
J.A.D.L. Blommaert ◽  
...  

We surveyed 0.5 square degrees in the Bar of the LMC with ISOCAM at 4.5 and 12 μm, and with DENIS in the I, J, and Ks bands. Our goal was to build a complete sample of Thermally-Pulsing AGB stars. Here we present the first analysis of 0.14 square degrees. In total we find about 300 TP-AGB stars. Among these TP-AGB stars, 9% are obscured AGB stars (high mass-loss rates); 9 of them were detected by IRAS, and only 1 was previously identified. Their luminosities range from 2 500 to 14 000 L⊙, with a distribution very similar to the one of optical TP-AGB stars (i.e. those with low mass-loss rates). Such a luminosity distribution, as well as the percentage of obscured stars among TP-AGB stars, is in very good agreement with the evolutionary models of Vassiliadis & Wood (1993) if most of the TP-AGB stars that we find have initial masses smaller than 1.5 to 2 M⊙.


2020 ◽  
Vol 496 (2) ◽  
pp. 1325-1342 ◽  
Author(s):  
Ioana Boian ◽  
Jose H Groh

ABSTRACT We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code cmfgen. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, we constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early times. Because massive stars have strong mass-loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 108 to 1012 L⊙ range, temperatures from 10 000 to 60 000 K, progenitor mass-loss rates from a few 10−4 up to 1 M⊙ yr−1, wind velocities from 100 to 800 km s−1, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyse results from ongoing and future large-scale surveys such as the Zwicky Transient Factory.


2020 ◽  
Vol 494 (1) ◽  
pp. 1323-1347 ◽  
Author(s):  
T Danilovich ◽  
A M S Richards ◽  
L Decin ◽  
M Van de Sande ◽  
C A Gottlieb

ABSTRACT We present and analyse SO and SO2, recently observed with high angular resolution and sensitivity in a spectral line survey with ALMA, for two oxygen-rich AGB stars: the low mass-loss rate R Dor and high mass-loss rate IK Tau. We analyse 8 lines of SO detected towards both stars, 78 lines of SO2 detected towards R Dor, and 52 lines of SO2 detected towards IK Tau. We detect several lines of 34SO, 33SO, and 34SO2 towards both stars, and tentatively S18O towards R Dor, and hence derive isotopic ratios for these species. The spatially resolved observations show us that the two sulphur oxides are co-located towards R Dor and trace out the same wind structures in the circumstellar envelope. Much of the emission is well reproduced with a Gaussian abundance distribution spatially centred on the star. Emission from the higher energy levels of SO and SO2 towards R Dor provides evidence in support of a rotating inner region of gas identified in earlier work. The new observations allow us to refine the abundance distribution of SO in IK Tau derived from prior observations with single antennas, and confirm that the distribution is shell like with the peak in the fractional abundance not centred on the star. The confirmation of different types of SO abundance distributions will help fine-tune chemical models and allows for an additional method to discriminate between low and high mass-loss rates for oxygen-rich AGB stars.


1993 ◽  
Vol 155 ◽  
pp. 478-478
Author(s):  
E. Vassiliadis ◽  
P.R. Wood

Stars of mass 1–5 MM⊙ and composition Y=0.25 and Z=0.016 have been evolved from the main-sequence to the white dwarf stage with an empirical mass loss formula based on observations of mass loss rates in AGB stars. This mass loss formula (Wood 1990) causes the mass loss rate to rise exponentially with pulsation period on the AGB until superwind rates are achieved, where these rates correspond to radiation pressure driven mass loss rates. The formula was designed to reproduce the maximum periods observed for optically-visible LPVs and it also reproduces extremely well the maximum AGB luminosities observed in star clusters in the Magellanic Clouds (see Vassiliadis and Wood 1992 for details).


1995 ◽  
Vol 163 ◽  
pp. 318-319
Author(s):  
G. Meynet

We present here starburst models based on the most recent grids of stellar evolutionary tracks obtained by the Geneva group. These new models, computed with enhanced mass loss rates during the main sequence and the Wolf-Rayet WNL phases, very well reproduce the luminosities, surface abundances and statistics of WR stars (Maeder & Meynet 1994). This change of the mass loss rates considerably affects the way the WR stars, born in a starburst's episode, are distributed among the different WR subtypes. We compare the theoretical predictions with recent observations and conclude that: (1) to reproduce the high observed ratios of WNL to O-type stars, a flat IMF seems to be required; and (2) the models which reproduce the best the observed characteristics of WR stars, i.e., those computed with an enhanced mass loss rate, can also account for the observed properties of the WR populations observed in starbursts. Moreover, the possible presence of numerous WC stars found in the low metallicity He2-10 A starburst by Vacca and Conti (1992), can only be accounted for when the high mass loss rate stellar models are used.


Sign in / Sign up

Export Citation Format

Share Document