scholarly journals An ALMA view of SO and SO2 around oxygen-rich AGB stars

2020 ◽  
Vol 494 (1) ◽  
pp. 1323-1347 ◽  
Author(s):  
T Danilovich ◽  
A M S Richards ◽  
L Decin ◽  
M Van de Sande ◽  
C A Gottlieb

ABSTRACT We present and analyse SO and SO2, recently observed with high angular resolution and sensitivity in a spectral line survey with ALMA, for two oxygen-rich AGB stars: the low mass-loss rate R Dor and high mass-loss rate IK Tau. We analyse 8 lines of SO detected towards both stars, 78 lines of SO2 detected towards R Dor, and 52 lines of SO2 detected towards IK Tau. We detect several lines of 34SO, 33SO, and 34SO2 towards both stars, and tentatively S18O towards R Dor, and hence derive isotopic ratios for these species. The spatially resolved observations show us that the two sulphur oxides are co-located towards R Dor and trace out the same wind structures in the circumstellar envelope. Much of the emission is well reproduced with a Gaussian abundance distribution spatially centred on the star. Emission from the higher energy levels of SO and SO2 towards R Dor provides evidence in support of a rotating inner region of gas identified in earlier work. The new observations allow us to refine the abundance distribution of SO in IK Tau derived from prior observations with single antennas, and confirm that the distribution is shell like with the peak in the fractional abundance not centred on the star. The confirmation of different types of SO abundance distributions will help fine-tune chemical models and allows for an additional method to discriminate between low and high mass-loss rates for oxygen-rich AGB stars.

1999 ◽  
Vol 191 ◽  
pp. 239-244 ◽  
Author(s):  
Takashi Kozasa ◽  
Hisato Sogawa

Crystallization of silicate has been investigated within the framework of dust formation in steady state gas outflows around oxygen–rich AGB stars, where silicates are locked not only into homogeneous silicate grains but also into the mantles of heterogeneous grains. Based on the thermal history of dust grains after their formation, the crystallization calculation results in no crystalline silicate for the mass loss rate Ṁ ≤ 2 × 10−5M⊙ yr−1. Only silicate in the mantles of heterogeneous grains can be crystallized for Ṁ ≥ 3 × 10−5M⊙ yr−1, while homogeneous silicate grains remain amorphous. The mass fraction of crystalline silicate increases with increasing Ṁ. The radiation transfer calculations confirm the appearance of an emission feature around 33.5 μm, taking olivine as a representative of crystalline silicates. On the other hand, the 10μm feature appears in absorption, being dominated by homogeneous silicate grains. These trends are consistent with the observations. Thus the crystalline silicate is a diagnostics of high mass loss rate at the late stage of AGB stellar evolution, reflecting the formation process of dust grains.


2018 ◽  
Vol 609 ◽  
pp. A63 ◽  
Author(s):  
M. Van de Sande ◽  
L. Decin ◽  
R. Lombaert ◽  
T. Khouri ◽  
A. de Koter ◽  
...  

Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims. Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods. We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results. We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline starts at the stellar surface and has an e-folding radius re of 1.85 ± 0.05 × 1015 cm or 74 ± 2 R∗. Conclusions. We cannot unambiguously identify the mechanism by which SiO is destroyed at 60 ± 10 R∗. The initial abundances found are higher than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-J transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2019 ◽  
Vol 621 ◽  
pp. C2
Author(s):  
L. Decin ◽  
A. M. S. Richards ◽  
T. Danilovich ◽  
W. Homan ◽  
J. A. Nuth

1995 ◽  
Vol 163 ◽  
pp. 318-319
Author(s):  
G. Meynet

We present here starburst models based on the most recent grids of stellar evolutionary tracks obtained by the Geneva group. These new models, computed with enhanced mass loss rates during the main sequence and the Wolf-Rayet WNL phases, very well reproduce the luminosities, surface abundances and statistics of WR stars (Maeder & Meynet 1994). This change of the mass loss rates considerably affects the way the WR stars, born in a starburst's episode, are distributed among the different WR subtypes. We compare the theoretical predictions with recent observations and conclude that: (1) to reproduce the high observed ratios of WNL to O-type stars, a flat IMF seems to be required; and (2) the models which reproduce the best the observed characteristics of WR stars, i.e., those computed with an enhanced mass loss rate, can also account for the observed properties of the WR populations observed in starbursts. Moreover, the possible presence of numerous WC stars found in the low metallicity He2-10 A starburst by Vacca and Conti (1992), can only be accounted for when the high mass loss rate stellar models are used.


2007 ◽  
Vol 3 (S243) ◽  
pp. 299-306 ◽  
Author(s):  
Sean Matt ◽  
Ralph E. Pudritz

AbstractStellar winds may be important for angular momentum transport from accreting T Tauri stars, but the nature of these winds is still not well-constrained. We present some simulation results for hypothetical, hot (∼ 106 K) coronal winds from T Tauri stars, and we calculate the expected emission properties. For the high mass loss rates required to solve the angular momentum problem, we find that the radiative losses will be much greater than can be powered by the accretion process. We place an upper limit to the mass loss rate from accretion-powered coronal winds of ∼ 10−11M yr−1. We conclude that accretion powered stellar winds are still a promising scenario for solving the stellar angular momentum problem, but the winds must be cool (e.g., 104 K) and thus are not driven by thermal pressure.


2018 ◽  
Vol 615 ◽  
pp. A28 ◽  
Author(s):  
L. Decin ◽  
A. M. S. Richards ◽  
T. Danilovich ◽  
W. Homan ◽  
J. A. Nuth

Context. Low and intermediate mass stars are known to power strong stellar winds when evolving through the asymptotic giant branch (AGB) phase. Initial mass, luminosity, temperature, and composition determine the pulsation characteristics of the star and the dust species formed in the pulsating photospheric layers. Radiation pressure on these grains triggers the onset of a stellar wind. However, as of today, we still cannot predict the wind mass-loss rates and wind velocities from first principles neither do we know which species are the first to condense in the upper atmospheric regions. Aims. We aim to characterise the dominant physical, dynamical, and chemical processes in the inner wind region of two archetypical oxygen-rich (C/O < 1) AGB stars, that is, the low mass-loss rate AGB star R Dor (Ṁ ~ 1 × 10−7 M⊙ yr−1) and the high mass-loss rate AGB star IK Tau (Ṁ ~ 5 × 10−6 M⊙ yr−1). The purpose of this study is to observe the key molecular species contributing to the formation of dust grains and to cross-link the observed line brightnesses of several species to the global and local properties of the star and its wind. Methods. A spectral line and imaging survey of IK Tau and R Dor was made with ALMA between 335 and 362 GHz (band 7) at a spatial resolution of ~150 mas, which corresponds to the locus of the main dust formation region of both targets. Results. Some two hundred spectral features from 15 molecules (and their isotopologues) were observed, including rotational lines in both the ground and vibrationally excited states (up to v = 5 for SiO). Detected species include the gaseous precursors of dust grains such as SiO, AlO, AlOH, TiO, and TiO2. We present a spectral atlas for both stars and the parameters of all detected spectral features. A clear dichotomy for the sulphur chemistry is seen: while CS, SiS, SO, and SO2 are abundantly present in IK Tau, only SO and SO2 are detected in R Dor. Also other species such as NaCl, NS, AlO, and AlOH display a completely different behaviour. From some selected species, the minor isotopologues can be used to assess the isotopic ratios. The channel maps of many species prove that both large and small-scale inhomogeneities persist in the inner wind of both stars in the form of blobs, arcs, and/or a disk. The high sensitivity of ALMA allows us to spot the impact of these correlated density structures in the spectral line profiles. The spectral lines often display a half width at zero intensity much larger than expected from the terminal velocity, v∞, previously derived for both objects (36 km s−1 versus v∞~ 17.7 km s−1 for IK Tau and 23 km s−1 versus v∞~ 5.5 km s−1 for R Dor). Both a more complex 3D morphology and a more forceful wind acceleration of the (underlying) isotropic wind can explain this trend. The formation of fractal grains in the region beyond ~400 mas can potentially account for the latter scenario. From the continuum map, we deduce a dust mass of ~3.7 × 10−7 M⊙ and ~2 × 10−8 M⊙ for IK Tau and R Dor, respectively. Conclusions. The observations presented here provide important constraints on the properties of these two oxygen-dominated AGB stellar winds. In particular, the ALMA data prove that both the dynamical and chemical properties are vastly different for this high mass-loss rate (IK Tau) and low mass-loss rate (R Dor) star.


2020 ◽  
Vol 642 ◽  
pp. A142 ◽  
Author(s):  
J. Wiegert ◽  
M. A. T. Groenewegen ◽  
A. Jorissen ◽  
L. Decin ◽  
T. Danilovich

Context. High-angular-resolution observations of asymptotic giant branch (AGB) stars often reveal non-spherical morphologies for the gas and dust envelopes. Aims. We aim to make a pilot study to quantify the impact of different geometries (spherically symmetric, spiral-shaped, and disc-shaped) of the dust component of AGB envelopes on spectral energy distributions (SEDs), mass estimates, and subsequent mass-loss rate (MLR) estimates. We also estimate the error made on the MLR if the SED is fitted by an inappropriate geometrical model. Methods. We use the three-dimensional Monte-Carlo-based radiative-transfer code RADMC-3D to simulate emission from dusty envelopes with different geometries (but fixed spatial extension). We compare these predictions with each other, and with the SED of the AGB star EP Aqr that we use as a benchmark since its envelope is disc-like and known to harbour spiral arms, as seen in CO. Results. The SEDs involving the most massive envelopes are those for which the different geometries have the largest impact, primarily on the silicate features at 10 and 18 μm. These different shapes originate from large differences in optical depths. Massive spirals and discs appear akin to black bodies. Optically thick edge-on spirals and discs (with dust masses of 10−4 and 10−5 M⊙) exhibit black-body SEDs that appear cooler than those from face-on structures and spheres of the same mass, while optically thick face-on distributions appear as warmer emission. We find that our more realistic models, combined spherical and spiral distributions, are 0.1 to 0.5 times less massive than spheres with similar SEDs. More extreme, less realistic scenarios give that spirals and discs are 0.01 to 0.05 times less massive than corresponding spheres. This means that adopting the wrong geometry for an AGB circumstellar envelope may result in a MLR that is incorrect by as much as one to two orders of magnitude when derived from SED fitting.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 450-451
Author(s):  
Vikram V. Dwarkadas

AbstractRed Supergiants (RSGs) have for decades been assumed to be the progenitors of Type IIP supernovae (SNe). They are expected to have dense winds with mass-loss rates up to 10−4 M⊙ yr−1. We have created a database of available X-ray lightcurves of SNe. Type IIP SNe are found to have the lowest X-ray luminosities among all classes, which is surprising given the high mass-loss rate winds expected from their red supergiant progenitors, and therefore the high density medium into which Type IIP SNe are expected to expand into. We show that the low X-ray luminosity sets a limit on the mass-loss rate of the progenitor star which can collapse to become a RSG, which is about 10−5 M⊙ yr−1. This in turn can be used to set a limit on the initial mass of a RSG star which can become a Type IIP progenitor, which is about 19 M⊙. This is consistent with the limit obtained via direct optical progenitor identification. Optically identified progenitors of Type IIP SNe are found to be RSGs with masses less than about 17 M⊙ (Smartt (2009)). We discuss the implications of this result for stellar evolution, theorize on the fate of RSG stars with initial mass > 19 M⊙, and discuss what type of SNe they will produce at the end of their lifetime.


2021 ◽  
Vol 162 (2) ◽  
pp. 57
Author(s):  
Everett Schlawin ◽  
Kate Y. L. Su ◽  
Terry Herter ◽  
Andrew Ridden-Harper ◽  
Dániel Apai

Sign in / Sign up

Export Citation Format

Share Document