scholarly journals Stellar mass–halo mass relation for the brightest central galaxies of X-ray clusters since z ∼ 0.65

2019 ◽  
Vol 631 ◽  
pp. A175 ◽  
Author(s):  
G. Erfanianfar ◽  
A. Finoguenov ◽  
K. Furnell ◽  
P. Popesso ◽  
A. Biviano ◽  
...  

We present the brightest cluster galaxies (BCGs) catalog for SPectroscoic IDentification of eROSITA Sources (SPIDERS) DR14 cluster program value-added catalog. We list the 416 BCGs identified as part of this process, along with their stellar mass, star formation rates (SFRs), and morphological properties. We identified the BCGs based on the available spectroscopic data from SPIDERS and photometric data from SDSS. We computed stellar masses and SFRs of the BCGs on the basis of SDSS, WISE, and GALEX photometry using spectral energy distribution fitting. Morphological properties for all BCGs were derived by Sersic profile fitting using the software package SIGMA in different optical bands (g,r,i). We combined this catalog with the BCGs of galaxy groups and clusters extracted from the deeper AEGIS, CDFS, COSMOS, XMM-CFHTLS, and XMM-XXL surveys to study the stellar mass–halo mass relation using the largest sample of X-ray groups and clusters known to date. This result suggests that the mass growth of the central galaxy is controlled by the hierarchical mass growth of the host halo. We find a strong correlation between the stellar mass of BCGs and the mass of their host halos. This relation shows no evolution since z ∼ 0.65. We measure a mean scatter of 0.21 and 0.25 for the stellar mass of BCGs in a given halo mass at low (0.1 <  z <  0.3) and high (0.3 <  z <  0.65) redshifts, respectively. We further demonstrate that the BCG mass is covariant with the richness of the host halos in the very X-ray luminous systems. We also find evidence that part of the scatter between X-ray luminosity and richness can be reduced by considering stellar mass as an additional variable.

2019 ◽  
Vol 15 (S356) ◽  
pp. 226-226
Author(s):  
Viola Allevato

AbstractThe presence of a super massive BH in almost all galaxies in the Universe is an accepted paradigm in astronomy. How these BHs form and how they co-evolve with the host galaxy is one of the most intriguing unanswered problems in modern Cosmology and of extreme relevance to understand the issue of galaxy formation. Clustering measurements can powerfully test theoretical model predictions of BH triggering scenarios and put constraints on the typical environment where AGN live in, through the connection with their host dark matter halos. In this talk, I will present some recent results on the AGN clustering dependence on host galaxy properties, such as galaxy stellar mass, star formation rate and specific BH accretion rate, based on X-ray selected Chandra COSMOS Legacy Type 2 AGN. We found no significant AGN clustering dependence on galaxy stellar mass and specif BHAR for Type 2 COSMOS AGN at mean z ∼ 1.1, with a stellar - halo mass relation flatter than predicted for non active galaxies in the Mstar range probed by our sample. We also observed a negative clustering dependence on SFR, with AGN hosting halo mass increasing with decreasing SFR. Mock catalogs of active galaxies in hosting dark matter halos with logMh[Msun] > 12.5, matched to have the same X-ray luminosity, stellar mass and BHAR of COSMOS AGN predict the observed Mstar - Mh, BHAR - Mh and SFR-Mh relations, at z ∼ 1.


2020 ◽  
Vol 497 (4) ◽  
pp. 4262-4275
Author(s):  
Thomas M Jackson ◽  
A Pasquali ◽  
C Pacifici ◽  
C Engler ◽  
A Pillepich ◽  
...  

ABSTRACT The stellar mass assembly of galaxies can be affected by both secular and environmental processes. In this study, for the first time, we investigate the stellar mass assembly of $\sim 90\, 000$ low-redshift, central galaxies selected from SDSS group catalogues ($M_{\rm Stellar}\gtrsim 10^{9.5}\, \mathrm{M}_{\odot }$, $M_{\rm Halo}\gtrsim 10^{12}\, \mathrm{M}_{\odot }$) as a function of both stellar mass and halo mass. We use estimates of the times at which 10, 50, and 90 per cent of the stellar mass were assembled from photometric spectral energy distribution fitting, allowing a more complete investigation than single stellar ages alone. We consider trends in both stellar mass and halo mass simultaneously, finding dependences of all assembly times on both. We find that galaxies with higher stellar masses (at constant halo mass) have on average older lookback times, similar to previous studies of galaxy assembly. We also find that galaxies at higher halo mass (at constant stellar mass) have younger lookback times, possibly due to a larger reservoir of gas for star formation. An exception to this is a subsample with high stellar-to-halo mass ratios, which are likely massive, field spirals. We compare these observed trends to those predicted by the TNG300 simulation, finding good agreement overall as a function of either stellar mass or halo mass. However, some differences in the assembly times (of up to ∼3 Gyr) appear when considering both stellar mass and halo mass simultaneously, noticeably at intermediate stellar masses (MStellar ∼ 1011 M⊙). These discrepancies are possibly linked to the quenched fraction of galaxies and the kinetic mode active galactic nucleus feedback implemented in TNG300.


2018 ◽  
Vol 620 ◽  
pp. A82 ◽  
Author(s):  
C. Circosta ◽  
V. Mainieri ◽  
P. Padovani ◽  
G. Lanzuisi ◽  
M. Salvato ◽  
...  

Theoretical models of galaxy formation suggest that the presence of an active galactic nucleus (AGN) is required to regulate the growth of its host galaxy through feedback mechanisms, produced by, for example, AGN-driven outflows. Although many observational studies have revealed that such outflows are common both at low and high redshift, a comprehensive picture is still missing. In particular, the peak epoch of galaxy assembly (1 <  z <  3) has been poorly explored so far, and current observations in this redshift range are mostly limited to targets with high chances to be in an outflowing phase. This paper introduces SUPER (a SINFONI Survey for Unveiling the Physics and Effect of Radiative feedback), an ongoing ESO’s VLT/SINFONI Large Programme. SUPER will perform the first systematic investigation of ionized outflows in a sizeable and blindly-selected sample of 39 X-ray AGN at z ∼ 2, which reaches high spatial resolutions (∼2 kpc) thanks to the adaptive optics-assisted IFS observations. The outflow morphology and star formation in the host galaxy will be mapped through the broad component of [O III]λ5007 and the narrow component of Hα emission lines. The main aim of our survey is to infer the impact of outflows on the on-going star formation and to link the outflow properties to a number of AGN and host galaxy properties. We describe here the survey characteristics and goals, as well as the selection of the target sample. Moreover, we present a full characterization of its multi-wavelength properties: we measure, via spectral energy distribution fitting of UV-to-FIR photometry, stellar masses (4 × 109 − 2 × 1011 M⊙), star formation rates (25 − 680 M⊙ yr−1) and AGN bolometric luminosities (2 × 1044 − 8 × 1047 erg s−1), along with obscuring column densities (up to 2 × 1024 cm−2) and luminosities in the hard 2 − 10 keV band (2 × 1043 − 6 × 1045 erg s−1) derived through X-ray spectral analysis. Finally, we classify our AGN as jetted or non-jetted according to their radio and FIR emission.


2018 ◽  
Vol 618 ◽  
pp. A31 ◽  
Author(s):  
V. A. Masoura ◽  
G. Mountrichas ◽  
I. Georgantopoulos ◽  
A. Ruiz ◽  
G. Magdis ◽  
...  

There is growing evidence supporting the coeval growth of galaxies and their resident super-massive black hole (SMBH). Most studies also claim a correlation between the activity of the SMBH and the star formation of the host galaxy. It is unclear, however, whether this correlation extends to all redshifts and X-ray luminosities. Some studies find a weaker dependence at lower luminosities and/or a suppression of the star formation at high luminosities. We here use data from the X-ATLAS and XMM-XXL North fields and compile the largest X-ray sample up to date to investigate how X-ray selected AGN affect the star formation of their host galaxies in a wide redshift and luminosity baseline of 0.03 < z < 3 and log LX(2−10 keV) = (41−45.5) erg s−1. Our sample consists of 3336 AGN. 1872 of our sources have spectroscopic redshifts. For the remaining sources we calculate photometric redshifts using TPZ, a machine-learning algorithm. We estimate stellar masses (M⋆) and star formation rates (SFRs) by applying spectral energy distribution fitting through the CIGALE code, using optical, near-IR, and mid-IR photometry (SDSS, VISTA, and WISE). Of our sources, 608 also have far-IR photometry (Herschel). We use these sources to calibrate the SFR calculations of our remaining X-ray sample. Our results show a correlation between the X-ray luminosity (LX) and the SFR of the host galaxy at all redshifts and luminosities spanned by our sample. We also find a dependence of the specific SFR (sSFR) on redshift, while there are indications that the X-ray luminosity enhances the sSFR even at low redshifts. We then disentangle the effects of stellar mass and redshift on the SFR and again study its dependence on the X-ray luminosity. Towards this end, we estimate the SFR of main-sequence galaxies that have the same stellar mass and redshift as our X-ray AGN and compare them with the SFR of our X-ray AGN. Our analysis reveals that the AGN enhances the star formation of its host galaxy when the galaxy lies below the main sequence and quenches the star formation of the galaxy it lives in when the host lies above the main sequence. Therefore, the effect of AGN on the SFR of the host galaxy depends on the location of the galaxy relative to the main sequence.


2018 ◽  
Vol 619 ◽  
pp. A76 ◽  
Author(s):  
X. W. Shu ◽  
Y. Q. Xue ◽  
D. Z. Liu ◽  
T. Wang ◽  
Y. K. Han ◽  
...  

Aims. We present a multiwavelength study of an atypical submillimeter galaxy, GH500.30, in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central active galactic nucleus (AGN) activity. Although it is shown that the source is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. Methods. We use NOEMA observation at 1.2 mm with subarcsecond resolution to resolve the dust emission, and precisely localize the counterparts at other wavelengths, which allows us to better constrain its stellar and dust spectral energy distribution (SED) as well as redshift. We carry out the new near-infrared (NIR) photometry of GH500.30 observed with HST, and perform panchromatic SED modelling from ultraviolet (UV)/optical to submillimeter. We derive the photometric redshift using both NIR and far-infrared (FIR) SED modeling, and place constraints on the stellar and dust properties such as stellar mass, age, dust attenuation, IR luminosity, and star-formation rate (SFR). The AGN properties are inferred from the X-ray spectral analysis and radio observations, and its contribution to the total IR luminosity is estimated from the broadband SED fittings using MAGPHYS. Results. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at λ ≲ 1.4 μm. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z ≳ 4, though a lower redshift at z ≳ 3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (∼0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ∼3.5 × 1011 M⊙ would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with NH = 3.3+2.0−1.7 × 1023 cm−2 and an intrinsic 2–10 keV luminosity of Lx ∼ 2.6 × 1044 erg s−1, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. Conclusions. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.


2020 ◽  
Vol 492 (4) ◽  
pp. 5592-5606 ◽  
Author(s):  
A Katsianis ◽  
V Gonzalez ◽  
D Barrientos ◽  
X Yang ◽  
C D P Lagos ◽  
...  

ABSTRACT There is a severe tension between the observed star formation rate (SFR)–stellar mass (M⋆) relations reported by different authors at z = 1–4. In addition, the observations have not been successfully reproduced by state-of-the-art cosmological simulations that tend to predict a factor of 2–4 smaller SFRs at a fixed M⋆. We examine the evolution of the SFR–M⋆ relation of z = 1–4 galaxies using the skirt simulated spectral energy distributions of galaxies sampled from the Evolution and Assembly of GaLaxies and their Environments simulations. We derive SFRs and stellar masses by mimicking different observational techniques. We find that the tension between observed and simulated SFR–M⋆ relations is largely alleviated if similar methods are used to infer the galaxy properties. We find that relations relying on infrared wavelengths (e.g. 24 ${\rm \, \mu m}$, MIPS – 24, 70, and 160 ${\rm \, \mu m}$ or SPIRE – 250, 350, and 500 ${\rm \, \mu m}$) have SFRs that exceed the intrinsic relation by 0.5 dex. Relations that rely on the spectral energy distribution fitting technique underpredict the SFRs at a fixed stellar mass by −0.5 dex at z ∼ 4 but overpredict the measurements by 0.3 dex at z ∼ 1. Relations relying on dust-corrected rest-frame ultraviolet luminosities, are flatter since they overpredict/underpredict SFRs for low/high star-forming objects and yield deviations from the intrinsic relation from 0.10 to −0.13 dex at z ∼ 4. We suggest that the severe tension between different observational studies can be broadly explained by the fact that different groups employ different techniques to infer their SFRs.


2018 ◽  
Vol 620 ◽  
pp. A15 ◽  
Author(s):  
V. Guglielmo ◽  
B. M. Poggianti ◽  
B. Vulcani ◽  
A. Moretti ◽  
J. Fritz ◽  
...  

Context. Superclusters form from the largest enhancements in the primordial density perturbation field and extend for tens of Mpc, tracing the large-scale structure of the Universe. X-ray detections and systematic characterisations of superclusters and the properties of their galaxies have only been possible in the last few years. Aims. We characterise XLSSsC N01, a rich supercluster at z ~ 0.3 detected in the XXL Survey, composed of X-ray clusters of different virial masses and X-ray luminosities. As one of the first studies on this topic, we investigate the stellar populations of galaxies in different environments in the supercluster region. Methods. We study a magnitude-limited (r ≤ 20) and a mass-limited sample (log(M*∕M⊙) ≥ 10.8) of galaxies in the virialised region and in the outskirts of 11 XLSSsC N01 clusters, in high-density field regions, and in the low-density field. We compute the stellar population properties of galaxies using spectral energy distribution (SED) and spectral fitting techniques, and study the dependence of star formation rates (SFR), colours, and stellar ages on environment. Results. For r ≤ 20, the fraction of star-forming/blue galaxies, computed either from the specific-SFR (sSFR) or rest-frame colour, shows depletion within the cluster virial radii, where the number of galaxies with log (sSFR/ yr−1) > −12 and with (g − r)restframe < 0.6 is lower than in the field. For log(M*∕M⊙) ≥ 10.8, no trends with environment emerge, as massive galaxies are mostly already passive in all environments. No differences among low- and high-density field members and cluster members emerge in the sSFR-mass relation in the mass-complete regime. Finally, the luminosity-weighted age–mass relation of the passive populations within cluster virial radii show signatures of recent environmental quenching. Conclusions. The study of luminous and massive galaxies in this supercluster shows that while environment has a prominent role in determining the fractions of star-forming/blue galaxies, its effects on the star formation activity in star-forming galaxies are negligible.


2019 ◽  
Vol 490 (4) ◽  
pp. 5043-5056 ◽  
Author(s):  
P W Hatfield ◽  
C Laigle ◽  
M J Jarvis ◽  
J Devriendt ◽  
I Davidzon ◽  
...  

ABSTRACT Hydrodynamical cosmological simulations have recently made great advances in reproducing galaxy mass assembly over cosmic time – as often quantified from the comparison of their predicted stellar mass functions to observed stellar mass functions from data. In this paper, we compare the clustering of galaxies from the hydrodynamical cosmological simulated light-cone Horizon-AGN to clustering measurements from the VIDEO survey observations. Using mocks built from a VIDEO-like photometry, we first explore the bias introduced into clustering measurements by using stellar masses and redshifts derived from spectral energy distribution fitting, rather than the intrinsic values. The propagation of redshift and mass statistical and systematic uncertainties in the clustering measurements causes us to underestimate the clustering amplitude. We then find that clustering and halo occupation distribution (HOD) modelling results are qualitatively similar in Horizon-AGN and VIDEO. However, at low stellar masses, Horizon-AGN underestimates the observed clustering by up to a factor of ∼3, reflecting the known excess stellar mass to halo mass ratio for Horizon-AGN low-mass haloes, already discussed in previous works. This reinforces the need for stronger regulation of star formation in low-mass haloes in the simulation. Finally, the comparison of the stellar mass to halo mass ratio in the simulated catalogue, inferred from angular clustering, to that directly measured from the simulation validates HOD modelling of clustering as a probe of the galaxy–halo connection.


2018 ◽  
Vol 14 (S346) ◽  
pp. 152-157
Author(s):  
F. Fortin ◽  
S. Chaty ◽  
P. Goldoni ◽  
A. Goldwurm

AbstractThe supergiant high-mass X-ray binary IGR J16318-4848 was detected by INTEGRAL in 2003 and distinguishes itself by its high intrinsic absorption and B[e] phenomenon. It is the perfect candidate to study both binary interaction and the environment of supergiant B[e] stars. We report on VLT/X-Shooter observations from July 2012 in both optical and near-infrared, which provide unprecedented wide-range, well-resolved spectra of IGR J16318-4848 from 0.5 to 2.5 μm. Adding VLT/VISIR and Herschel data, the spectral energy distribution fitting allows us to further constrain the contribution of each emission region (central star, irradiated rim, dusty disc). We derive geometrical parameters using the numerous emitting and absorbing elements in each different sites in the binary. Various line shapes are detected, such as P-Cygni profiles and flat-topped lines, which are the signature of outflowing material. Preliminary results confirm the edge-on line of sight and the equatorial configuration of expanding material, along with the detection of a potentially very collimated polar outflow. These are evidence that the extreme environment of IGR J16318-4848 is ideal to have a better grasp of highly obscured high-mass X-ray binaries.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z &lt; 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages &lt; 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of &lt;0.1 dex.


Sign in / Sign up

Export Citation Format

Share Document