kinetic mode
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 40-46
Author(s):  
Yu. V. Sokolova ◽  
◽  
E. V. Bogatyreva ◽  

Calcium molybdate forms powellite, it is produced as a result of oxidizing roasting of off-grade molybdenum sulphide concentrates and other molybdenum materials with calcium additives (calcium oxides and hydro xides, calcium chlorides) in air at the temperatures of 550–600 oC. Use of Na2CO3 solutions enables an efficient recovery of Мо from CaMoO4 and a quantitative removal of impurities. To determine the optimum conditions for this process, one would need data on CaMoO4 leaching within a broad range of Na2CO3 concentrations and at high temperature and one would need to analyze the composition of the solid phase and the kinetic parameters of the process, i.e. rate and rate-controlling step. The authors look at the CaMoO4 leaching kinetics in 1.0–2.5 mol/l Na2CO3 solutions at 60–90 oC. It was found that the process rate is dictated by the stirring intensity and tends to increase with a rising temperature and the reagent concentration rising in the range of 1.0–1.5 mol/l. A higher concentration of Na2CO3 has no effect on the reaction rate. An apparent reaction order was determined in the Na2CO3 concentration range of 1.0–1.5 mol/l. An equation is proposed for calculating the CaMoO4 dissolution rate for the Na2CO3 solution and the temperature of 80 oC. It was established that a kinetic mode of leaching takes place in the soda concentration range of 1.0–1.5 mol/l amid intensive stirring. It is demonstrated that, within the studied Na2CO3 concentration range, calcite СаСО3 is formed after vaterite, a less stable phase of calcite, with crystallization of double sodium-calcium carbonates Na2Са(CO3)2·nH2O (n = 0, 2, 5) occurring at the same time. With the concentration of soda being >1.5 mol/l, the process is controlled by internal diffusion. In this region, the leaching rate is independent of the Na2CO3 concentration. Formation of double carbonates is associated with an additional consumption of soda. Therefore, when using this system one should consider how CaMoO4 typically dissolves in Na2CO3 solutions. The presence of these compounds in the soda solution after molybdenum leaching may impact the recovery of Мо from the solution using the known techniques. It may also hinder the recirculation of sodium carbonates going for the second leaching cycle.


2021 ◽  
Vol 37 (5) ◽  
pp. 117-122
Author(s):  
E.A. Zvereva ◽  
O.D. Hendrickson ◽  
B.B. Dzantiev ◽  
A.V. Zherdev

Abstract-Methods for control of the content of non-meat components (connective tissue of animals, eggs, soybeans) in meat products have been developed based on competitive enzyme immunoassay of biomarker proteins: collagen, ovalbumin, and soybean trypsin inhibitor. Polyclonal rabbit antibodies against the biomarkers were produced. Screening of the following analysis conditions was carried out using the most affine preparations: the duration of the stages, the concentrations of the reagents, the composition of the reaction medium to ensure the completeness and the minimum limits of detection of analytes. It was shown that the immunochemical stage can be transferred to the kinetic mode and reduced to 20 min, while the total analysis took only 1 h. The selected conditions synchronized detection stages and provided the same signal amplitudes from all three biomarkers. An additional advantage of the method is that the analysis can be carried out at room temperature. The detection limits for collagen, ovalbumin and soybean trypsin inhibitor in the final extracts were 0.025 μg/mL, 0.012 μg/mL, and 0.001 μg/mL, respectively. Approbation of the method showed the reliability of the conclusions about the composition of the tested meat products; the relative standard deviation in the analysis of the monitored biomarkers was 8-10%. Key words: enzyme-linked immunoassay, meat products, collagen, ovalbumin, soybean trypsin inhibitor The work was financially supported by the Russian Science Foundation (project no. 19-16-00108).


2020 ◽  
Vol 2020 (3) ◽  
pp. 227-234
Author(s):  
S Matkarimov ◽  
◽  
B Berdiyarov ◽  
S Nosirkhujayev ◽  
K Ochildiyev ◽  
...  

The article discusses the issues of processing slag of copper production using devices that model ideal mixing. It has been shown that the use of this type of apparatus increases the efficiency of physical and chemical processes and significantly reduces the copper content in dump slags. It has been found that the process of reduction of ferric iron oxide by the clinker in the initial period takes place in the kinetic mode. After reducing the concentration of magnetite (3-5%) in the slag, the process of reducing it passes into the diffusion region, that is, restoring the excess content of ferric iron in iron silicate melts takes a short period of time during which the process can be carried out, without significantly delaying the operation time of the main industrial equipment. The optimal slag magnetite reducing agent is determined to be zinc production waste


2020 ◽  
Vol 497 (4) ◽  
pp. 4262-4275
Author(s):  
Thomas M Jackson ◽  
A Pasquali ◽  
C Pacifici ◽  
C Engler ◽  
A Pillepich ◽  
...  

ABSTRACT The stellar mass assembly of galaxies can be affected by both secular and environmental processes. In this study, for the first time, we investigate the stellar mass assembly of $\sim 90\, 000$ low-redshift, central galaxies selected from SDSS group catalogues ($M_{\rm Stellar}\gtrsim 10^{9.5}\, \mathrm{M}_{\odot }$, $M_{\rm Halo}\gtrsim 10^{12}\, \mathrm{M}_{\odot }$) as a function of both stellar mass and halo mass. We use estimates of the times at which 10, 50, and 90 per cent of the stellar mass were assembled from photometric spectral energy distribution fitting, allowing a more complete investigation than single stellar ages alone. We consider trends in both stellar mass and halo mass simultaneously, finding dependences of all assembly times on both. We find that galaxies with higher stellar masses (at constant halo mass) have on average older lookback times, similar to previous studies of galaxy assembly. We also find that galaxies at higher halo mass (at constant stellar mass) have younger lookback times, possibly due to a larger reservoir of gas for star formation. An exception to this is a subsample with high stellar-to-halo mass ratios, which are likely massive, field spirals. We compare these observed trends to those predicted by the TNG300 simulation, finding good agreement overall as a function of either stellar mass or halo mass. However, some differences in the assembly times (of up to ∼3 Gyr) appear when considering both stellar mass and halo mass simultaneously, noticeably at intermediate stellar masses (MStellar ∼ 1011 M⊙). These discrepancies are possibly linked to the quenched fraction of galaxies and the kinetic mode active galactic nucleus feedback implemented in TNG300.


2020 ◽  
Vol 33 (7) ◽  
pp. 975-980
Author(s):  
Cong-Yu Zhang ◽  
Hao Chen ◽  
Jia-Ning Zhu ◽  
Chi Zhang ◽  
Zhi-Gang Yang

2019 ◽  
Vol 490 (4) ◽  
pp. 5722-5738 ◽  
Author(s):  
Yunchong Wang ◽  
Mark Vogelsberger ◽  
Dandan Xu ◽  
Xuejian Shen ◽  
Shude Mao ◽  
...  

ABSTRACT We study the evolutionary trend of the total density profile of early-type galaxies (ETGs) in IllustrisTNG. To this end, we trace ETGs from z = 0 to 4 and measure the power-law slope γ′ of the total density profile for their main progenitors. We find that their slopes γ′ steepen on average during z ∼ 4–2, then becoming shallower until z = 1, after which they remain almost constant, aside from a residual trend of becoming shallower towards z = 0. We also compare to a statistical sample of ETGs at different redshifts, selected based on their luminosity profiles and stellar masses. Due to different selection effects, the average slopes of the statistical samples follow a modified evolutionary trend. They monotonically decrease since z = 3, and after z ≈ 1, they remain nearly invariant with a mild increase towards z = 0. These evolutionary trends are mass dependent for both samples, with low-mass galaxies having in general steeper slopes than their more massive counterparts. Galaxies that transitioned to ETGs more recently have steeper mean slopes as they tend to be smaller and more compact at any given redshift. By analysing the impact of mergers and AGN feedback on the progenitors’ evolution, we conjecture a multiphase path leading to isothermality in ETGs: dissipation associated with rapid wet mergers tends to steepen γ′ from z = 4 to 2, whereas subsequent AGN feedback (especially in the kinetic mode) makes γ′ shallower again from z = 2 to 1. Afterwards, passive evolution from z = 1 to 0, mainly through gas-poor mergers, mildly decreases γ′ and maintains the overall mass distribution close to isothermal.


2019 ◽  
Vol 15 (S356) ◽  
pp. 189-193
Author(s):  
Fu-Guo Xie

AbstractAGN feedback, through either radiation or kinematics by expelled medium, plays a crucial role in the coevolution of supermassive black hole (SMBH) and its host galaxy. The nuclei spend most of their time as low-luminosity AGNs (LLAGNs), whose spectra are distinctive to bright AGNs, and the feedback is the hot mode (also named kinetic mode). We thus investigate the radiative heating in the hot mode. We calculate the value of “Compton temperature” Tc, which defines the heating capability of the radiation at given flux, and find that Tc∼(5−15)×107 K, depending on the spectrum of individual LLAGNs. This work provides a cheap way to include the radiative heating of LLAGNs in the study of AGN feedback.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1045 ◽  
Author(s):  
Tao Jia ◽  
Run Ni ◽  
Hanle Wang ◽  
Jicheng Shen ◽  
Zhaodong Wang

The Cr-rich precipitates at the interphase boundary in stainless steels not only lead to the sensitization, which further induces the intergranular corrosion and intergranular stress corrosion cracking, but also significantly deteriorate the ductility and toughness. In this work, the formation of Cr-rich precipitates at the interphase boundary in type 430 stainless steel was investigated from the perspective of austenite–ferrite transformation kinetics. Cyclic heat treatment was firstly conducted to reveal the kinetic mode of transformation behavior, i.e., local equilibrium or para equilibrium. Subsequently, interrupted quenching during continuous cooling was carried out, which illustrated clearly the relevance of the formation of interphase Cr-rich precipitates to the Cr enrichment adjacent to the interphase boundary as revealed by line scanning of energy dispersive spectroscopy (EDS). Finally, this enrichment of Cr was interpreted by DICTRA simulation, which is based on the determined kinetic mode for austenite–ferrite transformation. This work has, for the first time, established the correlation between the formation of interphase Cr-rich precipitates and the austenite–ferrite transformation kinetics.


2019 ◽  
Vol 953 ◽  
pp. 198-205
Author(s):  
Ji Fu Du ◽  
Zhen Dong ◽  
Xin Yang ◽  
Long Zhao

Glycidyl methacrylate (GMA) was grafted onto the surface of HDPE particles by radiation grafting and emulsion graft copolymerization. And subsequent ring-opening reaction of expoxy groups in poly-GMA graft chains with N-methylglucamine (NMG) was conducted to synthesis the boron adsorbent. The synthesis condition (radiation dose and NMG concentration) was optimized and characterized by IR and SEM. Adsorption behaviors of the boron adsorbent for boron removal presented that adsorption kinetics was well described by pseudo-second-order kinetic mode. The adsorption isothermal was well fitted with both Langmuir and Freundlich isotherm models. The adsorption capacity for boron reached 15.63 mg/g at optimal pH 8. Dynamic experiment revealed that boron could be efficiently adsorbed by the boron adsorbent and fully desorbed using 13 BV of 1 mol/L HCl.


Sign in / Sign up

Export Citation Format

Share Document