scholarly journals The dwarf galaxy satellite system of Centaurus A

2019 ◽  
Vol 629 ◽  
pp. A18 ◽  
Author(s):  
Oliver Müller ◽  
Marina Rejkuba ◽  
Marcel S. Pawlowski ◽  
Rodrigo Ibata ◽  
Federico Lelli ◽  
...  

Dwarf galaxy satellite systems are essential probes to test models of structure formation, making it necessary to establish a census of dwarf galaxies outside of our own Local Group. We present deep FORS2 VI band images from the ESO Very Large Telescope (VLT) for 15 dwarf galaxy candidates in the Centaurus group of galaxies. We confirm nine dwarfs to be members of Cen A by measuring their distances using a Bayesian approach to determine the tip of the red giant branch luminosity. We have also fit theoretical isochrones to measure their mean metallicities. The properties of the new dwarfs are similar to those in the Local Group in terms of their sizes, luminosities, and mean metallicities. Within our photometric precision, there is no evidence of a metallicity spread, but we do observe possible extended star formation in several galaxies, as evidenced by a population of asymptotic giant branch stars brighter than the red giant branch tip. The new dwarfs do not show any signs of tidal disruption. Together with the recently reported dwarf galaxies by the complementary PISCeS survey, we study the luminosity function and 3D structure of the group. By comparing the observed luminosity function to the high-resolution cosmological simulation IllustrisTNG, we find agreement within a 90% confidence interval. However, Cen A seems to be missing its brightest satellites and has an overabundance of the faintest dwarfs in comparison to its simulated analogs. In terms of the overall 3D distribution of the observed satellites, we find that the whole structure is flattened along the line-of-sight, with a root-mean-square (rms) height of 130 kpc and an rms semi-major axis length of 330 kpc. Future distance measurements of the remaining dwarf galaxy candidates are needed to complete the census of dwarf galaxies in the Centaurus group.

2019 ◽  
Vol 629 ◽  
pp. L2 ◽  
Author(s):  
Oliver Müller ◽  
Rodrigo Ibata ◽  
Marina Rejkuba ◽  
Lorenzo Posti

Dwarf galaxies are key objects for small-scale cosmological tests like the abundance problems or the planes-of-satellites problem. A crucial task is therefore to get accurate information for as many nearby dwarf galaxies as possible. Using extremely deep, ground-based V and i-band Subaru Suprime Cam photometry with a completeness of i = 27 mag, we measure the distance of the dwarf galaxy [TT2009] 25 using the tip of the red giant branch as a standard candle. This dwarf resides in the field around the Milky Way-analog NGC 891. Using a Bayesian approach, we measure a distance of 10.28−1.73+1.17 Mpc, which is consistent with the distance of NGC 891, and thus confirm it as a member of NGC 891. The dwarf galaxy follows the scaling relations defined by the Local Group dwarfs. We do not find an extended stellar halo around [TT2009] 25. In the small field of view of 100 kpc covered by the survey, only one bright dwarf galaxy and the giant stream are apparent. This is comparable to the Milky Way, where one bright dwarf resides in the same volume, as well as the Sagittarius stream – excluding satellites which are farther away but would be projected in the line-of-sight. It is thus imperative to survey for additional dwarf galaxies in a larger area around NGC 891 to test the abundance of dwarf galaxies and compare this to the number of satellites around the Milky Way.


2020 ◽  
Vol 634 ◽  
pp. A10 ◽  
Author(s):  
L. Hermosa Muñoz ◽  
S. Taibi ◽  
G. Battaglia ◽  
G. Iorio ◽  
M. Rejkuba ◽  
...  

Context. Dwarf galaxies found in isolation in the Local Group (LG) are unlikely to have interacted with the large LG spirals, and therefore environmental effects such as tidal and ram-pressure stripping should not be the main drivers of their evolution. Aims. We provide insight into the internal mechanisms shaping LG dwarf galaxies by increasing our knowledge of the internal properties of isolated systems. Here we focus on the evolved stellar component of the Aquarius dwarf galaxy, whose kinematic and metallicity properties have only recently started to be explored. Methods. Spectroscopic data in the region of the near-infrared Ca II triplet lines has been obtained with FORS2 at the Very Large Telescope for 53 red giant branch (RGB) stars. These data are used to derive line-of-sight (l.o.s.) velocities and [Fe/H] of the individual RGB stars. Results. We derive a systemic velocity of −142.2+1.8−1.8 km s−1, in agreement with previous determinations from both the HI gas and stars. The internal kinematics of Aquarius appears to be best modelled by a combination of random motions (l.o.s. velocity dispersion of 10.3+1.6−1.3 km s−1) and linear rotation (with a gradient −5.0+1.6−1.9 km s−1 arcmin−1) along a PA = 139+17−27 deg, broadly consistent with the optical projected major axis. This rotation signal is significantly misaligned or even counter-rotating to that derived from the HI gas. We also find the tentative presence of a mild negative metallicity gradient and indications that the metal-rich stars have a colder velocity dispersion than the metal-poor ones. Conclusions. This work represents a significant improvement with respect to previous measurements of the RGB stars of Aquarius as it doubles the number of member stars already studied in the literature. We speculate that the misaligned rotation between the HI gas and evolved stellar component might have been the result of recent accretion of HI gas, or re-accretion after gas-loss due to internal stellar feedback.


2018 ◽  
Vol 14 (S344) ◽  
pp. 94-95
Author(s):  
Yutaka Komiyama

AbstractWe have carried out a wide and deep imaging survey for the Local Group dwarf spheroidal galaxy Ursa Minor (UMi) using Hyper Suprime-Cam (HSC). The data cover out beyond the nominal tidal radius down to ~25 mag in i band, which is ~2 mag below the main sequence turn-off point. The structural parameters of UMi are derived using red giant branch (RGB) stars and sub-giant branch (SGB) stars, and the tidal radius is suggested to be larger than those estimated by the previous studies. It is also found that the distribution of bluer RGB/SGB stars is more extended than that of redder RGB/SGB stars. The fraction of binary systems is estimated to be ~0.4 from the morphology of the main sequences.


2020 ◽  
Vol 497 (4) ◽  
pp. 4162-4182 ◽  
Author(s):  
Eugene Vasiliev ◽  
Vasily Belokurov

ABSTRACT We use the astrometric and photometric data from Gaia Data Release 2 and line-of-sight velocities from various other surveys to study the 3D structure and kinematics of the Sagittarius dwarf galaxy. The combination of photometric and astrometric data makes it possible to obtain a very clean separation of Sgr member stars from the Milky Way foreground; our final catalogue contains 2.6 × 105 candidate members with magnitudes G < 18, more than half of them being red clump stars. We construct and analyse maps of the mean proper motion and its dispersion over the region ∼30 × 12 deg, which show a number of interesting features. The intrinsic 3D density distribution (orientation, thickness) is strongly constrained by kinematics; we find that the remnant is a prolate structure with the major axis pointing at ∼45° from the orbital velocity and extending up to ∼5 kpc, where it transitions into the stream. We perform a large suite of N-body simulations of a disrupting Sgr galaxy as it orbits the Milky Way over the past 2.5 Gyr, which are tailored to reproduce the observed properties of the remnant (not the stream). The richness of available constraints means that only a narrow range of parameters produce a final state consistent with observations. The total mass of the remnant is $\sim \!4\times 10^8\, \mathrm{M}_\odot$, of which roughly a quarter resides in stars. The galaxy is significantly out of equilibrium, and even its central density is below the limit required to withstand tidal forces. We conclude that the Sgr galaxy will likely be disrupted over the next Gyr.


2011 ◽  
Vol 141 (6) ◽  
pp. 194 ◽  
Author(s):  
Marek Górski ◽  
Grzegorz Pietrzyński ◽  
Wolfgang Gieren
Keyword(s):  

1999 ◽  
Vol 192 ◽  
pp. 268-271
Author(s):  
Myung Gyoon Lee

Deep BVI CCD photometry of dwarf galaxy DD0 210 obtained in this study shows that the resolved stellar population in this galaxy consists of a dominant old red giant population and some young stars. We have estimated the distance to this galaxy using the I-band magnitude of the tip of the red giant branch, obtaining a value of 1030±50 kpc. This result combined with the velocity of DDO 210 shows that DDO 210 is a member of the Local Group.


2015 ◽  
Vol 11 (S317) ◽  
pp. 350-351
Author(s):  
Mikito Tanaka ◽  
Masashi Chiba ◽  
Yutaka Komiyama

AbstractWe have observed on-going interacting galaxies (NGC4631 and NGC4656) using Subaru/Hyper Suprime-Cam and reduced the data using HSC pipeline and conducted photometry based on DAOphot. Then, we have detected 8 new dwarf galaxy candidates in the outer region of NGC4631 and confirmed the three candidates previously reported by Karachentsev et al. 2014. The 3 or 4 candidates detected in this study may be a star-forming dwarf irregular galaxy and the other 7 candidates may be an old dwarf spheroidal galaxy based on these stellar populations. It looks like that the effective radius - absolute magnitude relation of dwarf galaxies in NGC4631 group is similar to the relation of the Local Group and the other galaxy systems.


2007 ◽  
Vol 3 (S244) ◽  
pp. 331-335 ◽  
Author(s):  
S. Mieske ◽  
M. Hilker ◽  
L. Infante ◽  
C. Mendes de Oliveira

AbstractWe analyse the photometric properties of the early-type Fornax cluster dwarf galaxy population (MV > −17 mag), based on a wide field imaging study of the central cluster area in V and I band-passes with IMACS/Magellan at Las Campanas Observatory. We create a fiducial sample of ~ 100 Fornax cluster dwarf ellipticals (dEs) with −16.6 < MV < −8.8 mag in the following three steps: (1) To verify cluster membership, we measured I-band surface brightness fluctuations (SBF) distances to candidate dEs known from previous surveys; (2) We re-assessed morphological classifications for those candidate dEs that are too faint for SBF detection; and (3) We searched for new candidate dEs in the size-luminosity regime close to the resolution limit of previous surveys. The resulting fiducial dE sample follows a well-defined surface brightness – magnitude relation, showing that Fornax dEs are about 40% larger than Local Group dEs. The sample also defines a colour-magnitude relation similar to that of Local Group dEs. The early-type dwarf galaxy luminosity function in Fornax has a very flat faint end slope α ≃ −1.1 ± 0.1. We compare the number of dwarfs per unit mass with those in other environments and find that the Fornax cluster fits well into a general trend of a lack of high-mass dwarfs in more massive environments.


2020 ◽  
Vol 501 (2) ◽  
pp. 2363-2377
Author(s):  
Alan W McConnachie ◽  
Clare R Higgs ◽  
Guillaume F Thomas ◽  
Kim A Venn ◽  
Patrick Côté ◽  
...  

ABSTRACT We measure systemic proper motions for distant dwarf galaxies in the Local Group and investigate if these isolated galaxies have ever had an interaction with the Milky Way or M31. We cross-match photometry of isolated, star-forming, dwarf galaxies in the Local Group, taken as part of the Solo survey, with astrometric measurements from Gaia Data Release 2. We find that NGC 6822, Leo A, IC 1613, and WLM have sufficient supergiants with reliable astrometry to derive proper motions. An additional three galaxies (Leo T, Eridanus 2, and Phoenix) are close enough that their proper motions have already been derived using red giant branch stars. Systematic errors in Gaia DR2 are significant for NGC 6822, IC 1613, and WLM. We explore the orbits for these galaxies, and conclude that Phoenix, Leo A, and WLM are unlikely to have interacted with the Milky Way or M31, unless these large galaxies are very massive (${\gtrsim}1.6 \times 10^{12}\, \mathrm{M}_\odot$). We rule out a past interaction of NGC 6822 with M31 at ${\sim}99.99{{\ \rm per\ cent}}$ confidence, and find there is a &lt;10 per cent chance that NGC 6822 has had an interaction with the Milky Way. We examine the likely origins of NGC 6822 in the periphery of the young Local Group, and note that a future interaction of NGC 6822 with the Milky Way or M31 in the next 4 Gyr is essentially ruled out. Our measurements indicate that future Gaia data releases will provide good constraints on the interaction history for the majority of these galaxies.


2021 ◽  
Vol 647 ◽  
pp. A170
Author(s):  
Alina Leščinskaitė ◽  
Rima Stonkutė ◽  
Vladas Vansevičius

Context. Leo A is a gas-rich dwarf irregular galaxy of low stellar mass located in the outskirts of the Local Group. It has an extended star formation history with stellar populations spanning a wide age range (∼0.01−10 Gyr). As Leo A is a well-isolated dwarf galaxy, it is a perfect target to study a galactic structure formed entirely by processes of self-induced star formation. Aims. Our aim is to study populations of the brightest asymptotic giant branch (AGB) stars and red giant branch (RGB) stars over the entire extent of the Leo A galaxy. Methods. We analysed populations of AGB and RGB stars in the Leo A galaxy using multicolour photometry data obtained with the Subaru Suprime-Cam (B, V, R, I, Hα) and HST ACS (F475W, F814W) cameras. In order to separate the Milky Way and Leo A populations of red stars, we developed a photometric method that enabled us to study the spatial distribution of AGB and RGB stars within the Leo A galaxy. Results. We found a previously unknown sequence of 26 peculiar RGB stars which probably have a strong CN band in their spectra (∼380−390 nm). This conclusion is supported by the infrared CN spectral features observed in four of these stars with available spectra from the literature. Additionally, we present a catalogue of 32 luminous AGB stars and 3 candidate AGB stars. Twelve AGB stars (three of them might have dusty envelopes) from this sample are newly identified; the remaining 20 AGB stars were already presented in the literature based on near-infrared observations. By splitting the RGB sequence into blue and red parts, we revealed different spatial distributions of the two subsets, with the former being more centrally concentrated than the latter. Cross-identification with spectroscopic data available in the literature suggests that the bulk of blue and red RGB stars are, on average, similar in metallicity; however, the red RGB stars might have an excess of metal-deficient stars of [Fe/H] < −1.8. We also found that the distributions of luminous AGB and blue RGB stars have nearly equal scale lengths (0.′87 ± 0.′06 and 0.′89 ± 0.′09, respectively), indicating that they could belong to the same generation. This conclusion is strengthened by the similarities of the cumulative distributions of AGB and blue RGB stars, both showing more centrally concentrated populations compared to red RGB stars. There is also a prominent decline in the ratio of AGB to RGB stars with an increasing radius. These results suggest that the star-forming disk of Leo A is shrinking, which is in agreement with the outside-in star formation scenario of dwarf galaxy evolution.


Sign in / Sign up

Export Citation Format

Share Document