scholarly journals Understanding star formation and feedback in small galaxies

2020 ◽  
Vol 634 ◽  
pp. A95
Author(s):  
L. M. Cairós ◽  
J. N. González-Pérez

Context. Low-luminosity, active star-forming blue compact galaxies (BCGs) are excellent laboratories for investigating the process of star formation on galactic scales and to probe the interplay between massive stars and the surrounding interstellar (or intergalactic) medium. Aims. We investigate the morphology, structure, and stellar content of BCG Mrk 900, as well as the excitation, ionization conditions, and kinematics of its H II regions and surrounding ionized gas. Methods. We obtained integral field observations of Mrk 900 working with the Visible Multi-Object Spectrograph at the Very Large Telescope. The observations were taken in the wavelength range 4150−7400 Å covering a field of view of 27″ × 27″ on the sky with a spatial sampling of 0.″67. From the integral field data we built continuum, emission, and diagnostic line ratio maps and produced velocity and velocity dispersion maps. We also generated the integrated spectrum of the major H II regions and the nuclear area to determine reliable physical parameters and oxygen abundances. Integral field spectroscopy was complemented with deep broad-band photometry taken at the 2.5 m NOT telescope; the broad-band data, tracing the galaxy up to radius 4 kpc, allowed us to investigate the properties of the low surface brightness underlying stellar host. Results. We disentangle two different stellar components in Mrk 900: a young population, which resolves into individual stellar clusters with ages ∼5.5−6.6 Myr and extends about 1 kpc along the galaxy minor axis, is placed on top of a rather red and regular shaped underlying stellar host, several Gyr old. We find evidence of a substantial amount of dust and an inhomogeneous extinction pattern, with a dust lane crossing the central starburst. Mrk 900 displays overall rotation, although distorted in the central, starburst regions; the dispersion velocity map is highly inhomogeneous, with values increasing up to 60 km s−1 at the periphery of the SF regions, where we also find hints of the presence of shocks. Our observational results point to an interaction or merger with a low-mass object or infalling gas as plausible trigger mechanisms for the present starburst event.

2011 ◽  
Vol 7 (S284) ◽  
pp. 20-25 ◽  
Author(s):  
Daniel Schaerer ◽  
Stephane de Barros

AbstractWe highlight and discuss the importance of accounting for nebular emission in the SEDs of high redshift galaxies, as lines and continuum emission can contribute significantly or subtly to broad-band photometry. Physical parameters such as the galaxy age, mass, star-formation rate, dust attenuation and others inferred from SED fits can be affected to different extent by the treatment of nebular emission.We analyse a large sample of Lyman break galaxies from z ~ 3–6, and show some main results illustrating e.g. the importance of nebular emission for determinations of the mass–SFR relation, attenuation and age. We suggest that a fairly large scatter in such relations could be intrinsic. We find that the majority of objects (~ 60–70%) is better fit with SEDs accounting for nebular emission; the remaining galaxies are found to show relatively weak or no emission lines. Our modeling, and supporting empirical evidence, suggests the existence of two categories of galaxies, “starbursts” and “post-starbursts” (lower SFR and older galaxies) among the LBG population, and relatively short star-formation timescales.


2019 ◽  
Vol 488 (1) ◽  
pp. L80-L84 ◽  
Author(s):  
J Méndez-Abreu ◽  
S F Sánchez ◽  
A de Lorenzo-Cáceres

ABSTRACT The star formation main sequence (SFMS) is a tight relation between the galaxy star formation rate (SFR) and its total stellar mass (M⋆). Early-type galaxies (ETGs) are often considered as low-SFR outliers of this relation. We study, for the first time, the separated distribution in the SFR versus M⋆ of bulges and discs of 49 ETGs from the CALIFA survey. This is achieved using c2d, a new code to perform spectrophotometric decompositions of integral field spectroscopy data cubes. Our results reflect that: (i) star formation always occurs in the disc component and not in bulges; (ii) star-forming discs in our ETGs are compatible with the SFMS defined by star-forming galaxies at z ∼ 0; (iii) the star formation is not confined to the outskirts of discs, but it is present at all radii (even where the bulge dominates the light); (iv) for a given mass, bulges exhibit lower sSFR than discs at all radii; and (v) we do not find a deficit of molecular gas in bulges with respect to discs for a given mass in our ETGs. We speculate our results favour a morphological quenching scenario for ETGs.


2016 ◽  
Vol 11 (S321) ◽  
pp. 296-296
Author(s):  
Marina Rodríguez-Baras ◽  
A.I. Díaz ◽  
F.F. Rosales-Ortega

AbstractThis project is aimed at understanding the dependence of star formation on the environment by analysing young stellar populations in two very different positions in disk galaxies: circumnuclear and outer disk giant regions. Integral field spectroscopy (IFS) provide an ideal means to achieve these goals providing simultaneous spatial and spectral resolution. Here we present the characterization of the work sample, composed by 671 outer regions and 725 inner regions from 263 isolated spirals galaxies observed by the CALIFA survey. The wide number of regions in both samples allows us to obtain statistically relevant results about the influence of metallicity, density and environment on star formation, and how it disseminates over the galaxy, to obtain evolutionary stories for the star-forming regions and to compare our results with models of massive star formation and galactic chemical evolution.


Author(s):  
R K Cochrane ◽  
P N Best ◽  
I Smail ◽  
E Ibar ◽  
C Cheng ◽  
...  

Abstract We present ∼0.15″ spatial resolution imaging of SHiZELS-14, a massive ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$), dusty, star-forming galaxy at z = 2.24. Our rest-frame $\sim 1\, \rm {kpc}$-scale, matched-resolution data comprise four different widely used tracers of star formation: the $\rm {H}\alpha$ emission line (from SINFONI/VLT), rest-frame UV continuum (from HST F606W imaging), the rest-frame far-infrared (from ALMA), and the radio continuum (from JVLA). Although originally identified by its modest $\rm {H}\alpha$ emission line flux, SHiZELS-14 appears to be a vigorously star-forming ($\rm {SFR}\sim 1000\, \rm {M_{\odot }\, yr^{-1}}$) example of a submillimeter galaxy, probably undergoing a merger. SHiZELS-14 displays a compact, dusty central starburst, as well as extended emission in $\rm {H}\alpha$ and the rest-frame optical and FIR. The UV emission is spatially offset from the peak of the dust continuum emission, and appears to trace holes in the dust distribution. We find that the dust attenuation varies across the spatial extent of the galaxy, reaching a peak of at least AHα ∼ 5 in the most dusty regions, although the extinction in the central starburst is likely to be much higher. Global star-formation rates inferred using standard calibrations for the different tracers vary from $\sim 10\!-\!1000\, \rm {M_{\odot }\, yr^{-1}}$, and are particularly discrepant in the galaxy’s dusty centre. This galaxy highlights the biased view of the evolution of star-forming galaxies provided by shorter wavelength data.


Author(s):  
M L Buzzo ◽  
B Ziegler ◽  
P Amram ◽  
M Verdugo ◽  
C E Barbosa ◽  
...  

Abstract We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and sometimes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion (σ ≈ 50 km s−1) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.


Galaxies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 31
Author(s):  
Jeremy R. Walsh ◽  
Ana Monreal-Ibero

The Multi-Unit Spectroscopic Explorer (MUSE) is a large integral field unit mounted on the ESO Very Large Telescope. Its spatial (60 arcsecond field) and wavelength (4800–9300Å) coverage is well suited to detailed imaging spectroscopy of extended planetary nebulae, such as in the Galaxy. An overview of the capabilities of MUSE applied to Planetary Nebulae (PNe) is provided together with the specific advantages and disadvantages. Some examples of archival MUSE observations of PNe are provided. MUSE datacubes for two targets (NGC 3132 and NGC 7009) are analyzed in detail, and they are used to show the advances achievable for planetary nebula studies. Prospects for further MUSE observations of PNe and a broader analysis of existing datasets are outlined.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 264-264
Author(s):  
Lisa J. Kewley

AbstractI will give an overview of the emission-line diagnostics used for star-forming galaxies. I will review the UV, optical, and IR diagnostics that can be used to yield information about the ISM conditions, star-formation properties, and power sources in GRB hosts, both globally, and with spatially-resolved data. I will discuss wide integral field spectroscopy and AO-led integral field spectroscopy on current and future telescopes, focusing on the insights to be gained on the properties of GRB sites.


2021 ◽  
Vol 504 (2) ◽  
pp. 2325-2345
Author(s):  
Emanuel Sillero ◽  
Patricia B Tissera ◽  
Diego G Lambas ◽  
Stefano Bovino ◽  
Dominik R Schleicher ◽  
...  

ABSTRACT We present p-gadget3-k, an updated version of gadget-3, that incorporates the chemistry package krome. p-gadget3-k follows the hydrodynamical and chemical evolution of cosmic structures, incorporating the chemistry and cooling of H2 and metal cooling in non-equilibrium. We performed different runs of the same ICs to assess the impact of various physical parameters and prescriptions, namely gas metallicity, molecular hydrogen formation on dust, star formation recipes including or not H2 dependence, and the effects of numerical resolution. We find that the characteristics of the simulated systems, both globally and at kpc-scales, are in good agreement with several observable properties of molecular gas in star-forming galaxies. The surface density profiles of star formation rate (SFR) and H2 are found to vary with the clumping factor and resolution. In agreement with previous results, the chemical enrichment of the gas component is found to be a key ingredient to model the formation and distribution of H2 as a function of gas density and temperature. A star formation algorithm that takes into account the H2 fraction together with a treatment for the local stellar radiation field improves the agreement with observed H2 abundances over a wide range of gas densities and with the molecular Kennicutt–Schmidt law, implying a more realistic modelling of the star formation process.


2019 ◽  
Vol 625 ◽  
pp. A114 ◽  
Author(s):  
E. F. Jiménez-Andrade ◽  
B. Magnelli ◽  
A. Karim ◽  
G. Zamorani ◽  
M. Bondi ◽  
...  

To better constrain the physical mechanisms driving star formation, we present the first systematic study of the radio continuum size evolution of star-forming galaxies (SFGs) over the redshift range 0.35 <  z <  2.25. We use the VLA COSMOS 3 GHz map (noise rms = 2.3 μJy beam−1, θbeam = 0.75 arcsec) to construct a mass-complete sample of 3184 radio-selected SFGs that reside on and above the main sequence (MS) of SFGs. We constrain the overall extent of star formation activity in galaxies by applying a 2D Gaussian model to their radio continuum emission. Extensive Monte Carlo simulations are used to validate the robustness of our measurements and characterize the selection function. We find no clear dependence between the radio size and stellar mass, M⋆, of SFGs with 10.5 ≲ log(M⋆/M⊙) ≲ 11.5. Our analysis suggests that MS galaxies are preferentially extended, while SFGs above the MS are always compact. The median effective radius of SFGs on (above) the MS of Reff = 1.5 ± 0.2 (1.0 ± 0.2) kpc remains nearly constant with cosmic time; a parametrization of the form Reff ∝ (1 + z)α yields a shallow slope of only α = −0.26 ± 0.08 (0.12 ± 0.14) for SFGs on (above) the MS. The size of the stellar component of galaxies is larger than the extent of the radio continuum emission by a factor ∼2 (1.3) at z = 0.5 (2), indicating star formation is enhanced at small radii. The galactic-averaged star formation rate surface density (ΣSFR) scales with the distance to the MS, except for a fraction of MS galaxies (≲10%) that harbor starburst-like ΣSFR. These “hidden” starbursts might have experienced a compaction phase due to disk instability and/or a merger-driven burst of star formation, which may or may not significantly offset a galaxy from the MS. We thus propose to use ΣSFR and distance to the MS in conjunction to better identify the galaxy population undergoing a starbursting phase.


2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


Sign in / Sign up

Export Citation Format

Share Document