scholarly journals Searching for kinematic evidence of Keplerian disks around Class 0 protostars with CALYPSO

2020 ◽  
Vol 635 ◽  
pp. A15 ◽  
Author(s):  
S. Maret ◽  
A. J. Maury ◽  
A. Belloche ◽  
M. Gaudel ◽  
Ph. André ◽  
...  

The formation of protoplanetary disks is not well understood. To understand how and when these disks are formed, it is crucial to characterize the kinematics of the youngest protostars at a high angular resolution. Here we study a sample of 16 Class 0 protostars to measure their rotation profile at scales from 50 to 500 au and search for Keplerian rotation. We used high-angular-resolution line observations obtained with the Plateau de Bure Interferometer as part of the CALYPSO large program. From 13CO (J = 2−1), C18O (J = 2−1) and SO (Nj = 56−45) moment maps, we find that seven sources show rotation about the jet axis at a few hundred au scales: SerpS-MM18, L1448-C, L1448-NB, L1527, NGC 1333-IRAS 2A, NGC 1333-IRAS 4B, and SVS13-B. We analyzed the kinematics of these sources in the uv plane to derive the rotation profiles down to 50 au scales. We find evidence for Keplerian rotation in only two sources, L1527 and L1448-C. Overall, this suggests that Keplerian disks larger than 50 au are uncommon around Class 0 protostars. However, in some of the sources, the line emission could be optically thick and dominated by the envelope emission. Due to the optical thickness of these envelopes, some of the disks could have remained undetected in our observations.

2018 ◽  
Vol 869 (2) ◽  
pp. L46 ◽  
Author(s):  
Cornelis P. Dullemond ◽  
Tilman Birnstiel ◽  
Jane Huang ◽  
Nicolás T. Kurtovic ◽  
Sean M. Andrews ◽  
...  

2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


2004 ◽  
Vol 221 ◽  
pp. 389-394
Author(s):  
C. P. Dullemond ◽  
C. Dominik ◽  
R. van Boekel ◽  
R. Waters ◽  
M. van den Ancker

We show that there exists a simple geometric picture for the geometries of protoplanetary disks around Herbig Ae/Be stars that explains the two main kinds of spectral energy distributions found for these objects, and that makes predictions that are qualitatively in agreement with currently available spatially resolved images and/or interferometric measurements. Also it qualitatively explains the phenomenon of UX Orionis variability.


2004 ◽  
Vol 221 ◽  
pp. 83-96
Author(s):  
Tyler L. Bourke ◽  
Alyssa A. Goodman

Magnetic fields are believed to play an important role in the evolution of molecular clouds, from their large scale structure to dense cores, protostellar envelopes, and protoplanetary disks. How important is unclear, and whether magnetic fields are the dominant force driving star formation at any scale is also unclear. In this review we examine the observational data which address these questions, with particular emphasis on high angular resolution observations. Unfortunately the data do not clarify the situation. It is clear that the fields are important, but to what degree we don't yet know. Observations to date have been limited by the sensitivity of available telescopes and instrumentation. In the future ALMA and the SKA in particular should provide great advances in observational studies of magnetic fields, and we discuss which observations are most desirable when they become available.


2004 ◽  
Vol 221 ◽  
pp. 75-82
Author(s):  
Nagayoshi Ohashi

We summarize recent progress of observational studies of infall in protostellar envelopes, with great emphasis on results obtained using millimeter and submillimeter interferometers. Interferometric observations allow us to spatially resolve kinematical structures of protostellar envelopes, enabling us to detect infalling motions in the envelope directly. High angular resolution observations of infalling envelopes having compact disks sufficiently bright in continuum show inverse P-Cygni profiles, which are the least ambiguous evidence for infall. Observations of infalling envelopes using the Submillimeter Array (SMA) may allow us to study the innermost infalling envelopes, where infalling motions most probably transform to Keplerian motions, leading to formation of Keplerian or protoplanetary disks around protostars.


2018 ◽  
Vol 610 ◽  
pp. A4 ◽  
Author(s):  
M. Guélin ◽  
N. A. Patel ◽  
M. Bremer ◽  
J. Cernicharo ◽  
A. Castro-Carrizo ◽  
...  

During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2–1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2–1), CO(1–0), CN(2–1) and C4H(24–23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (<40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r< 0.3′′) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s-1, with small turbulent motions. Based on that property, we have reconstructed the 3D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r< 25′′) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.


2021 ◽  
Vol 257 (1) ◽  
pp. 10 ◽  
Author(s):  
Gianni Cataldi ◽  
Yoshihide Yamato ◽  
Yuri Aikawa ◽  
Jennifer B. Bergner ◽  
Kenji Furuya ◽  
...  

2020 ◽  
Vol 499 (2) ◽  
pp. 2493-2512
Author(s):  
Zulema Abraham ◽  
Pedro P B Beaklini ◽  
Pierre Cox ◽  
Diego Falceta-Gonçalves ◽  
Lars-Åke Nyman

ABSTRACT We present images of η Carinae in the recombination lines H30α and He30α and the underlying continuum with 50 mas resolution (110 au), obtained with ALMA. For the first time, the 230 GHz continuum image is resolved into a compact core, coincident with the binary system position, and a weaker extended structure to the NW of the compact source. Iso-velocity images of the H30α recombination line show at least 16 unresolved sources with velocities between −30 and −65 km s−1 distributed within the continuum source. A NLTE model, with density and temperature of the order of 107 cm−3 and 104 K, reproduce both the observed H30α line profiles and their underlying continuum flux densities. Three of these sources are identified with Weigelt blobs D, C, and B; estimating their proper motions, we derive ejection times (in years) of 1952.6, 1957.1, and 1967.6, respectively, all of which are close to periastron passage. Weaker H30α line emission is detected at higher positive and negative velocities, extending in the direction of the Homunculus axis. The He30α recombination line is also detected with the same velocity of the narrow H30α line. Finally, the close resemblance of the H30α image with that of an emission line that was reported in the literature as HCO+(4–3) led us to identify this line as H40δ instead, an identification that is further supported by modelling results. Future observations will enable to determine the proper motions of all the compact sources discovered in the new high angular resolution data of η Carinae.


2004 ◽  
Vol 221 ◽  
pp. 275-282
Author(s):  
Vincent Minier

The newly upgraded Australia Telescope Compact Array (ATCA) at millimetre wavelengths is the first millimetre interferometer to be built in the Southern Hemisphere. The full array will be operational in 2004-2005 and will provide arcsec angular resolution at 3 mm and 12 mm. This will be a unique instrument to study at high angular resolution the interstellar chemistry and more generally the star formation process, especially in the bulk of the galactic plane and in the Magellanic Clouds. The upgraded ATCA will also be an excellent tool to detect dust emission from nearby protoplanetary disks. In this paper I will present the first results from the upgraded ATCA at 3 mm and 12 mm. The result review will cover the topics of massive star formation and hot molecular cores dust emission from star-forming regions and detection of protoplanetary disks.


2018 ◽  
Vol 869 (2) ◽  
pp. L45 ◽  
Author(s):  
Tilman Birnstiel ◽  
Cornelis P. Dullemond ◽  
Zhaohuan Zhu ◽  
Sean M. Andrews ◽  
Xue-Ning Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document