scholarly journals Fragmentation and isomerization of polycyclic aromatic hydrocarbons in the interstellar medium: Coronene as a case study

2020 ◽  
Vol 633 ◽  
pp. A103
Author(s):  
Tao Chen ◽  
Yi Luo ◽  
Aigen Li

Aims. Due to the limitations of current computational technology, the fragmentation and isomerization products of vibrationally-excited polycyclic aromatic hydrocarbon (PAH) molecules and their derivatives have been poorly studied. In this work, we investigate the intermediate products of PAHs and their derivatives as well as the gas-phase reactions relevant to the interstellar medium, with coronene as a case study. Methods. Based on the semi-empirical method of PM3 as implemented in the CP2K program, molecular dynamics simulations were performed to model the major processes (e.g., vibrations, fragmentations, and isomerizations) of coronene and its derivatives (e.g., methylated coronene, hydrogenated coronene, dehydrogenated coronene, nitrogen-substituted coronene, and oxygen-substituted coronene) at temperatures of 3000 K and 4000 K. Results. We find that the anharmonic effects are crucial for the simulation of vibrational excitation. For the molecules studied here, H2, CO, HCN, and CH2 are the major fragments. Following the dissociation of these small units, most of the molecules could maintain their ring structures, but a few molecules would completely break into carbon chains. The transformation from a hexagon to a pentagon or a heptagon may occur and the heteroatomic substitutions (e.g., N- or O-substitutions) would facilitate the transformation.

2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


2019 ◽  
Vol 632 ◽  
pp. A71 ◽  
Author(s):  
Tao Chen ◽  
Yi Luo ◽  
Aigen Li

Context. The 3.3 μm aromatic C–H stretching band of polycyclic aromatic hydrocarbon (PAH) molecules seen in a wide variety of astrophysical regions is often accompanied by a series of weak satellite bands at ∼3.4–3.6 μm. One of these sources, IRAS 21282+5050, a planetary nebula, also exhibits a weak band at ∼1.68 μm. While the satellite features at ∼3.4–3.6 μm are often attributed to the anharmonicities of PAHs, it is not clear whether overtones or combination bands dominate the 1.68 μm feature. Aims. In this work, we examine the anharmonic spectra of eight PAH molecules, including anthracene, tetracene, pentacene, phenanthrene, chrysene, benz[a]anthracene, pyrene, and perylene, to explore the origin of the infrared bands in the 1.6–1.7 μm wavelength region. Methods. Density functional theory (DFT) in combination with the vibrational second-order perturbation theory (VPT2) was used to compute the anharmonic spectra of PAHs. To simulate the vibrational excitation process of PAHs, the Wang–Landau random walk technique was employed. Results. All the dominant bands in the 1.6–1.7 μm wavelength range and in the 3.1–3.5 μm C–H stretching region are calculated and tabulated. It is demonstrated that combination bands dominate the 1.6–1.7 μm region, while overtones are rare and weak in this region. We also calculate the intensity ratios of the 3.1–3.5 μm C–H stretching features to the bands in the 1.6–1.7 μm region, I3.1 − 3.5/I1.6 − 1.7, for both ground and vibrationally excited states. On average, we obtain ⟨I3.1 − 3.5/I1.6 − 1.7⟩≈12.6 and ⟨I3.1 − 3.5/I1.6 − 1.7⟩≈17.6 for PAHs at ground states and at vibrationally excited states, respectively.


2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


Revista EIA ◽  
2021 ◽  
Vol 19 (37) ◽  
Author(s):  
Lucas Eugênio Rodrigues ◽  
Aílton Carlos Dos Santos Brandão ◽  
George Fernandes Azevedo

This work brings in its scope some analyzes around the constructive methodology of a case study that refers to the implantation of a dolphin (a structure that in this case has the purpose of mooring ships) at Pier III, located in Ponta da Madeira Maritime Terminal, in the city of São Luís, Maranhão, and with a focus on the process of building its infrastructure, more precisely the adopted foundation. This type of work, being port and in a maritime environment is called offshore, the foundation used in this case is the deep type, more precisely called piles excavated with a lost metallic shirt whose constructional scope will be detailed in this work, from the driving from shirts to concreting the piles that made up the system. The theme is approached from a practical and theoretical point of view, with a probabilistic study of the load capacity of foundations based on geometrical data from surveys carried out in the region, in order to define results that include any variability of the location and guarantee functionality and safety necessary for the foundation to achieve the project's objectives and be optimized throughout its useful life. The analysis of the probability of rupture was made using the semi-empirical method of Aoki-Velloso, combined with the First Order Second Moment method in order to compare the result achieved with the established parameter values. The work also aims to serve as a basis for future guidance and guidance on the topic, which does not have such a vast bibliography, mainly in view of the installation of new similar projects in the region and in other locations.


2020 ◽  
Author(s):  
Kenneth Lucas ◽  
George Barnes

We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of \textit{O}-sulfonation on the collision induced dissociation for serine. Towards this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m\z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m\z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The \mz 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also seen that the RM1 semi empirical method was not able to obtain all of the major peaks seen in experiment for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.


2011 ◽  
Vol 7 (S280) ◽  
pp. 361-371 ◽  
Author(s):  
Ian W. M. Smith

AbstractInformation about the rate coefficients and products of processes that occur in the interstellar medium are required as input to computer models that seek to reproduce the abundances of the rich variety of molecules that have been observed in different regions of the interstellar medium. In this brief review, I seek to identify the different kinds of gas-phase processes for which information is required and to consider the experimental, theoretical, and semi-empirical methods which are employed to measure or predict rate coefficients, k(T), and how they depend on temperature (T) – and also how the products of reactions can, in favourable cases, be observed.


2019 ◽  
Author(s):  
Chem Int

The full conformational space of N-formyl-L-alanine-amide was explored by the semi-empirical method AM1 coupled to the Multi Niche Crowding (MNC) genetic algorithm implemented in a package of programs developed in our laboratory. The structural and energy analysis of the resulting conformational space E(,ψ) exhibits 5 regions or minima ɣL, ɣD, ɛL, D and αD. The technique provides better detection of local and global minima within a reasonable time.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Sign in / Sign up

Export Citation Format

Share Document