scholarly journals Hints on the origins of particle traps in protoplanetary disks given by the Mdust – M⋆ relation

2020 ◽  
Vol 635 ◽  
pp. A105 ◽  
Author(s):  
Paola Pinilla ◽  
Ilaria Pascucci ◽  
Sebastian Marino

Context. Demographic surveys of protoplanetary disks, carried out mainly with the Atacama Large Millimeter/submillimete Array, have provided access to a large range of disk dust masses (Mdust) around stars with different stellar types and in different star-forming regions. These surveys found a power-law relation between Mdust and M⋆ that steepens in time, but which is also flatter for transition disks (TDs). Aims. We aim to study the effect of dust evolution in the Mdust−M⋆ relation. In particular, we are interested in investigating the effect of particle traps on this relation. Methods. We performed dust evolution models, which included perturbations to the gas surface density with different amplitudes to investigate the effect of particle trapping on the Mdust−M⋆ relation. These perturbations were aimed at mimicking pressure bumps that originated from planets. We focused on the effect caused by different stellar and disk masses based on exoplanet statistics that demonstrate a dependence of planet mass on stellar mass and metallicity. Results. Models of dust evolution can reproduce the observed Mdust−M⋆ relation in different star-forming regions when strong pressure bumps are included and when the disk mass scales with stellar mass (case of Mdisk = 0.05 M⋆ in our models). This result arises from dust trapping and dust growth beyond centimeter-sized grains inside pressure bumps. However, the flatter relation of Mdust − M⋆ for TDs and disks with substructures cannot be reproduced by the models unless the formation of boulders is inhibited inside pressure bumps. Conclusions. In the context of pressure bumps originating from planets, our results agree with current exoplanet statistics on giant planet occurrence increasing with stellar mass, but we cannot draw a conclusion about the type of planets needed in the case of low-mass stars. This is attributed to the fact that for M⋆ < 1 M⊙, the observed Mdust obtained from models is very low due to the efficient growth of dust particles beyond centimeter-sizes inside pressure bumps.

2018 ◽  
Vol 618 ◽  
pp. L3 ◽  
Author(s):  
C. F. Manara ◽  
A. Morbidelli ◽  
T. Guillot

When and how planets form in protoplanetary disks is still a topic of discussion. Exoplanet detection surveys and protoplanetary disk surveys are now providing results that are leading to new insights. We collect the masses of confirmed exoplanets and compare their dependence on stellar mass with the same dependence for protoplanetary disk masses measured in ∼1–3 Myr old star-forming regions. We recalculated the disk masses using the new estimates of their distances derived from Gaia DR2 parallaxes. We note that single and multiple exoplanetary systems form two different populations, probably pointing to a different formation mechanism for massive giant planets around very low-mass stars. While expecting that the mass in exoplanetary systems is much lower than the measured disk masses, we instead find that exoplanetary systems masses are comparable or higher than the most massive disks. This same result is found by converting the measured planet masses into heavy element content (core masses for the giant planets and full masses for the super-Earth systems) and by comparing this value with the disk dust masses. Unless disk dust masses are heavily underestimated, this is a big conundrum. An extremely efficient recycling of dust particles in the disk cannot solve this conundrum. This implies that either the cores of planets have formed very rapidly (<0.1–1 Myr) and a large amount of gas is expelled on the same timescales from the disk, or that disks are continuously replenished by fresh planet-forming material from the environment. These hypotheses can be tested by measuring disk masses in even younger targets and by better understanding if and how the disks are replenished by their surroundings.


2018 ◽  
Vol 14 (S345) ◽  
pp. 355-357
Author(s):  
Ya-Ping Li

AbstractIn this work, we carry out two-fluid (gas+dust) hydrodynamical simulations on a large family of models in order to study the dust coagulation and the dust-gas dynamical processes in protoplanetary disks. Our theoretical effort is guided by the observational results of disks in nearby star forming regions at sub-millimeter and millimeter (mm) wavelengths. By a systematic comparison with the continuum emission at several mm bands from ALMA observations, we find that ringed structures are predicated in the unresolved faint disks for those with mm spectral indexes as low as about 2.0. Our parameter exploration can also be used to constrain the fragmentation velocity, one key parameter of the dust coagulation model, and some other disk parameters.


2006 ◽  
Vol 2 (S237) ◽  
pp. 47-52
Author(s):  
François Boulanger

AbstractUnderstanding interstellar dust evolution is a major challenge underlying the interpretation of Spitzer observations of interstellar clouds, star forming regions and galaxies. I illustrate on-going work along two directions. I outline the potential impact of interstellar turbulence on the abundance of small dust particles in the diffuse interstellar medium and translucent sections of molecular clouds. I present results from an analysis of ISO and Spitzer observations of the central part of 30 Doradus, looking for dust evolution related to the radiative and dynamical impact of the R136 super star cluster on its parent molecular cloud.


2020 ◽  
Author(s):  
Enrique Sanchis

&lt;p&gt;I will present a demographic study of the gas content in protoplanetary disks of the Lupus star-forming region, based on the previous ALMA surveys of the region.&lt;/p&gt; &lt;p&gt;Planets form around stars during their pre-main sequence phase, when still surrounded by a circumstellar disk of dust and gas. Setting observational constraints on the gas and dust properties of protoplanetary disks is crucial in order to understand what are the ongoing physical processes in the disk. These processes shape the planet formation mechanisms, and ultimately tell us about the disk&amp;#8217;s ability to form planets.&lt;/p&gt; &lt;p&gt;The advent of ALMA allowed us to characterize dust properties in large populations of disks in several star-forming regions. Nevertheless, demographic studies of the gas content in these disk populations are scarce and generally incomplete, due to the fewer detections, and other difficulties when studying gas content.&lt;/p&gt; &lt;p&gt;In this work, we were able to assemble a large and homogeneous sample of disks from the Lupus region, all detected in &lt;sup&gt;12&lt;/sup&gt;CO and dust continuum. Gas emission profiles and sizes are estimated on 43 disks of the Lupus region. The profiles are inferred from the integrated emission maps of the &lt;sup&gt;12&lt;/sup&gt;CO transition line in ALMA Band 6. The observed emission is modeled using empirical functions: either the Nuker profile or an elliptical Gaussian for more compact sources. The gas size, defined as a certain fraction (e.g. 68%) of the total flux, is inferred from the modeled emission profiles.&lt;/p&gt; &lt;p&gt;These gas properties are then compared to the dust properties of the same objects, estimated from ALMA surveys in Band 7 and using analogous methodology.&lt;/p&gt; &lt;p&gt;The relative size of gas and dust is a key diagnostic of dust evolution. Large dust grains are decoupled from gas and drift inwards. Thus, if dust growth is prominent in these disks, the detected dust continuum emission in sub-mm wavelengths are expected to be several times smaller than the gas extent.&lt;/p&gt; &lt;p&gt;The results of our extensive sample confirm the larger gas size when compared to the dust size. The gas disk size is on average 2.6 times larger than the dust disk. This size difference can be explained by effective drifting of dust, but also by the optical depth difference between &lt;sup&gt;12&lt;/sup&gt;CO and dust continuum. Disentangling between these two effects is in general difficult; only large size ratios (typically beyond 4) unequivocally exhibit prominent dust evolution.&lt;/p&gt; &lt;p&gt;Only a small fraction (~18%) of the disk population has a size ratio larger than 4. Radial drift is intimately linked to grain growth, both are crucial processes to form the cores of planets. Our results might suggest that dust evolution is less common than previously thought.&lt;/p&gt; &lt;p&gt;We also investigated possible trends of the size ratio with stellar and disk properties, e.g. stellar mass, disk mass, integrated CO flux; no clear correlation can be found. Interestingly, the only Brown Dwarf of the sample with characterized gas and dust disk sizes shows a relatively large ratio of 3.8. On the other stellar mass range end, disks around stars with mass &gt; 0.8 M&lt;sub&gt;sun&lt;/sub&gt; have a tentative lower ratio of 2.1. Larger samples in the low mass regime and in the rest of stellar mass ranges are needed in order to discern possible trends between spectral types or other properties of the host stars.&lt;/p&gt;


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2019 ◽  
Vol 626 ◽  
pp. A11 ◽  
Author(s):  
P. Cazzoletti ◽  
C. F. Manara ◽  
H. Baobab Liu ◽  
E. F. van Dishoeck ◽  
S. Facchini ◽  
...  

Context. In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. Aims. We aim to compare the general properties of disks and their host stars in the nearby (d = 160 pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. Methods. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is ~0.3′′. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Results. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6 ± 3 M⊕. This value is significantly lower than that of disks in other young (1–3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5–10 Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Conclusions. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.


2000 ◽  
Vol 197 ◽  
pp. 147-159 ◽  
Author(s):  
Eric Herbst

It is difficult if not impossible to explain the abundances of assorted interstellar molecules in both the gaseous and condensed phases without the use of grain chemistry. Unfortunately, the chemistry occurring on grains is not well understood because of a variety of uncertainties including the nature, size, and shape of dust particles, the binding energies of key species, the dominant mechanism of surface chemistry, and the correct mathematical treatment of surface processes. Still, intrepid astrochemists have used granular chemistry in chemical models of an assortment of sources including cold clouds, protostellar disks, and hot cores. Indeed, the dominant explanation of the saturated gas-phase molecules observed in hot cores involves grain chemistry during an earlier, low temperature phase. Although gas-grain models have elucidated major features of the chemistry, much more work remains to be accomplished before they can be used to help characterize the physical conditions in star-forming regions and their temporal variations.


2013 ◽  
Vol 8 (S299) ◽  
pp. 230-231
Author(s):  
Alycia J. Weinberger ◽  
Alan P. Boss ◽  
Guillem Anglada-Escudé

AbstractWe present preliminary astrometric results aimed at understanding the lifetime of circumstellar disks and potential for planet formation. We have obtained parallaxes to stars in the TW Hydrae, Upper Scorpius, and Chamaeleon I stellar associations. These enable new estimates for the ages of the stars. We are also performing the Carnegie Astrometric Planet Search of nearby low mass stars for gas giant planets on wide orbits. We have our first candidate around a mature brown dwarf.


Author(s):  
J K Barrera-Ballesteros ◽  
S F Sánchez ◽  
T Heckman ◽  
T Wong ◽  
A Bolatto ◽  
...  

Abstract The processes that regulate star formation are essential to understand how galaxies evolve. We present the relation between star formation rate density, ΣSFR , and hydrostatic midplane pressure, Ph , for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey covering a wide range of stellar masses and morphologies. We find that these two parameters are tightly correlated, showing a smaller scatter in comparison to other star-forming relations. A power-law, with a slightly sub-linear index, is a good representation of this relation. Its residuals show a significant anti-correlation with both stellar age and metallicity whereas the total stellar mass may also play a secondary role in shaping the ΣSFR - Ph relation. For actively star-forming regions we find that the effective feedback momentum per unit stellar mass (p*/m*), measured from the Ph/ΣSFR ratio increases with Ph. The median value of this ratio for all the sampled regions is larger than the expected momentum just from supernovae explosions. Morphology of the galaxies, including bars, does not seem to have a significant impact in the ΣSFR - Ph relation. Our analysis indicates that local ΣSFR self-regulation comes mainly from momentum injection to the interstellar medium from supernovae explosions. However, other mechanisms in disk galaxies may also play a significant role in shaping the ΣSFR at kpc scales. Our results also suggest that Ph is the main parameter that modulates star formation at kpc scales, rather than individual components of the baryonic mass.


2020 ◽  
Vol 645 ◽  
pp. A29
Author(s):  
Ü. Kavak ◽  
Á. Sánchez-Monge ◽  
A. López-Sepulcre ◽  
R. Cesaroni ◽  
F. F. S. van der Tak ◽  
...  

Context. Recent theoretical and observational studies debate the similarities of the formation process of high- (>8 M⊙) and low-mass stars. The formation of low-mass stars is directly associated with the presence of disks and jets. Theoretical models predict that stars with masses up to 140 M⊙ can be formed through disk-mediated accretion in disk-jet systems. According to this scenario, radio jets are expected to be common in high-mass star-forming regions. Aims. We aim to increase the number of known radio jets in high-mass star-forming regions by searching for radio-jet candidates at radio continuum wavelengths. Methods. We used the Karl G. Jansky Very Large Array (VLA) to observe 18 high-mass star-forming regions in the C band (6 cm, ≈1′′.0 resolution) and K band (1.3 cm, ≈0′′.3 resolution). We searched for radio-jet candidates by studying the association of radio continuum sources with shock activity signs (e.g., molecular outflows, extended green objects, and maser emission). Our VLA observations also targeted the 22 GHz H2O and 6.7 GHz CH3OH maser lines. Results. We have identified 146 radio continuum sources, 40 of which are located within the field of view of both images (C and K band maps). We derived the spectral index, which is consistent with thermal emission (between − 0.1 and + 2.0) for 73% of these sources. Based on the association with shock-activity signs, we identified 28 radio-jet candidates. Out of these, we identified 7 as the most probable radio jets. The radio luminosity of the radio-jet candidates is correlated with the bolometric luminosity and the outflow momentum rate. About 7–36% of the radio-jet candidates are associated with nonthermal emission. The radio-jet candidates associated with 6.7 GHz CH3OH maser emission are preferentially thermal winds and jets, while a considerable fraction of radio-jet candidates associated with H2O masers show nonthermal emission that is likely due to strong shocks. Conclusions. About 60% of the radio continuum sources detected within the field of view of our VLA images are potential radio jets. The remaining sources could be compact H II regions in their early stages of development, or radio jets for which we currently lack further evidence of shock activity. Our sample of 18 regions is divided into 8 less evolved infrared-dark regions and 10 more evolved infrared-bright regions. We found that ≈71% of the identified radio-jet candidates are located in the more evolved regions. Similarly, 25% of the less evolved regions harbor one of the most probable radio jets, while up to 50% of the more evolved regions contain one of these radio-jet candidates. This suggests that the detection of radio jets in high-mass star-forming regions is more likely in slightly more evolved regions.


Sign in / Sign up

Export Citation Format

Share Document