scholarly journals The EDGE-CALIFA survey: Self-regulation of Star formation at kpc scales

Author(s):  
J K Barrera-Ballesteros ◽  
S F Sánchez ◽  
T Heckman ◽  
T Wong ◽  
A Bolatto ◽  
...  

Abstract The processes that regulate star formation are essential to understand how galaxies evolve. We present the relation between star formation rate density, ΣSFR , and hydrostatic midplane pressure, Ph , for 4260 star-forming regions of kpc size located in 96 galaxies included in the EDGE-CALIFA survey covering a wide range of stellar masses and morphologies. We find that these two parameters are tightly correlated, showing a smaller scatter in comparison to other star-forming relations. A power-law, with a slightly sub-linear index, is a good representation of this relation. Its residuals show a significant anti-correlation with both stellar age and metallicity whereas the total stellar mass may also play a secondary role in shaping the ΣSFR - Ph relation. For actively star-forming regions we find that the effective feedback momentum per unit stellar mass (p*/m*), measured from the Ph/ΣSFR ratio increases with Ph. The median value of this ratio for all the sampled regions is larger than the expected momentum just from supernovae explosions. Morphology of the galaxies, including bars, does not seem to have a significant impact in the ΣSFR - Ph relation. Our analysis indicates that local ΣSFR self-regulation comes mainly from momentum injection to the interstellar medium from supernovae explosions. However, other mechanisms in disk galaxies may also play a significant role in shaping the ΣSFR at kpc scales. Our results also suggest that Ph is the main parameter that modulates star formation at kpc scales, rather than individual components of the baryonic mass.

2020 ◽  
Vol 493 (1) ◽  
pp. L87-L91 ◽  
Author(s):  
Maan H Hani ◽  
Christopher C Hayward ◽  
Matthew E Orr ◽  
Sara L Ellison ◽  
Paul Torrey ◽  
...  

ABSTRACT The correlation between galaxies’ integrated stellar masses and star formation rates (the ‘star formation main sequence’, SFMS) is a well-established scaling relation. Recently, surveys have found a relationship between the star formation rate (SFR) and stellar mass surface densities on kpc and sub-kpc scales (the ‘resolved SFMS’, rSFMS). In this work, we demonstrate that the rSFMS emerges naturally in Feedback In Realistic Environments 2 (FIRE-2) zoom-in simulations of Milky Way-mass galaxies. We make SFR and stellar mass maps of the simulated galaxies at a variety of spatial resolutions and star formation averaging time-scales and fit the rSFMS using multiple methods from the literature. While the absolute value of the SFMS slope (αMS) depends on the fitting method, the slope is steeper for longer star formation time-scales and lower spatial resolutions regardless of the fitting method employed. We present a toy model that quantitatively captures the dependence of the simulated galaxies’ αMS on spatial resolution and use it to illustrate how this dependence can be used to constrain the characteristic mass of star-forming clumps.


2018 ◽  
Vol 609 ◽  
pp. A82 ◽  
Author(s):  
L. Bisigello ◽  
K. I. Caputi ◽  
N. Grogin ◽  
A. Koekemoer

The analysis of galaxies on the star formation rate-stellar mass (SFR–M∗) plane is a powerful diagnostic for galaxy evolution at different cosmic times. We consider a sample of 24 463 galaxies from the CANDELS/GOODS-S survey to conduct a detailed analysis of the SFR–M∗ relation at redshifts 0.5 ⩽ z<3 over more than three dex in stellar mass. To obtain SFR estimates, we utilise mid- and far-IR photometry when available, and rest-UV fluxes for all the other galaxies. We perform our analysis in different redshift bins, with two different methods: 1) a linear regression fitting of all star-forming galaxies, defined as those with specific SFRs log 10(sSFR/ yr-1) > −9.8, similarly to what is typically done in the literature; 2) a multi-Gaussian decomposition to identify the galaxy main sequence (MS), the starburst sequence and the quenched galaxy cloud. We find that the MS slope becomes flatter when higher stellar mass cuts are adopted, and that the apparent slope change observed at high masses depends on the SFR estimation method. In addition, the multi-Gaussian decomposition reveals the presence of a starburst population which increases towards low stellar masses and high redshifts. We find that starbursts make up ~ 5% of all galaxies at z = 0.5−1.0, while they account for ~ 16% of galaxies at 2 <z< 3 with log10(M∗/M0) = 8.25–11.25. We conclude that the dissection of the SFR–M∗ in multiple components over a wide range of stellar masses is necessary to understand the importance of the different modes of star formation through cosmic time.


2020 ◽  
Vol 499 (1) ◽  
pp. 948-956
Author(s):  
S M Randriamampandry ◽  
M Vaccari ◽  
K M Hess

ABSTRACT We investigate the relationship between the environment and the galaxy main sequence (the relationship between stellar mass and star formation rate), as well as the relationship between the environment and radio luminosity ($P_{\rm 1.4\, GHz}$), to shed new light on the effects of the environment on galaxies. We use the VLA-COSMOS 3-GHz catalogue, which consists of star-forming galaxies and quiescent galaxies (active galactic nuclei) in three different environments (field, filament, cluster) and for three different galaxy types (satellite, central, isolated). We perform for the first time a comparative analysis of the distribution of star-forming galaxies with respect to the main-sequence consensus region from the literature, taking into account galaxy environment and using radio observations at 0.1 ≤ z ≤ 1.2. Our results corroborate that the star formation rate is declining with cosmic time, which is consistent with the literature. We find that the slope of the main sequence for different z and M* bins is shallower than the main-sequence consensus, with a gradual evolution towards higher redshift bins, irrespective of environment. We see no trends for star formation rate in either environment or galaxy type, given the large errors. In addition, we note that the environment does not seem to be the cause of the flattening of the main sequence at high stellar masses for our sample.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2016 ◽  
Vol 11 (S321) ◽  
pp. 273-273
Author(s):  
C. Catalán-Torrecilla ◽  
A. Gil de Paz ◽  
A. Castillo-Morales ◽  
J. Méndez-Abreu ◽  
S. Pascual ◽  
...  

AbstractExploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hαobs + IR or UVobs + IR (Catalán-Torrecilla et al. 2015).Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy.2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their relative position to the star forming Main Sequence.


2020 ◽  
Vol 501 (2) ◽  
pp. 2231-2249 ◽  
Author(s):  
Kaitlyn Shin ◽  
Chun Ly ◽  
Matthew A Malkan ◽  
Sangeeta Malhotra ◽  
Mithi de los Reyes ◽  
...  

ABSTRACT Extragalactic studies have demonstrated that there is a moderately tight (≈0.3 dex) relationship between galaxy stellar mass (M⋆) and star formation rate (SFR) that holds for star-forming galaxies at M⋆ ∼ 3 × 108–1011 M⊙, i.e. the ‘star formation main sequence’. However, it has yet to be determined whether such a relationship extends to even lower mass galaxies, particularly at intermediate or higher redshifts. We present new results using observations for 714 narrow-band H α-selected galaxies with stellar masses between 106 and 1010 M⊙ (average of 108.2 M⊙) at z ≈ 0.07–0.5. These galaxies have sensitive ultraviolet (UV) to near-infrared photometric measurements and optical spectroscopy. The latter allows us to correct our H α SFRs for dust attenuation using Balmer decrements. Our study reveals that: (1) for low-SFR galaxies, our H α SFRs systematically underpredict compared to far-UV measurements, consistent with other studies; (2) at a given stellar mass (≈108 M⊙), log (specific SFR) evolves as A log (1 + z) with A = 5.26 ± 0.75, and on average, specific SFR increases with decreasing stellar mass; (3) the SFR–M⋆ relation holds for galaxies down to ∼106 M⊙ (∼1.5 dex below previous studies), and over lookback times of up to 5 Gyr, follows a redshift-dependent relation of log (SFR) ∝ α log (M⋆/M⊙) + β z with α = 0.60 ± 0.01 and β = 1.86 ± 0.07; and (4) the observed dispersion in the SFR–M⋆ relation at low stellar masses is ≈0.3 dex. Accounting for survey selection effects using simulated galaxies, we estimate that the true dispersion is ≈0.5 dex.


2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Yuki Yamaguchi ◽  
Kotaro Kohno ◽  
Bunyo Hatsukade ◽  
Tao Wang ◽  
Yuki Yoshimura ◽  
...  

Abstract We make use of the ALMA twenty-Six Arcmin2 survey of GOODS-S At One-millimeter (ASAGAO), deep 1.2 mm continuum observations of a 26-arcmin2 region in the Great Observatories Origins Deep Survey-South (GOODS-S) obtained with Atacama Large Millimeter/sub-millimeter Array (ALMA), to probe dust-enshrouded star formation in K-band selected (i.e., stellar mass selected) galaxies, which are drawn from the FourStar Galaxy Evolution Survey (ZFOURGE) catalog. Based on the ASAGAO combined map, which was created by combining ASAGAO and ALMA archival data in the GOODS-South field, we find that 24 ZFOURGE sources have 1.2 mm counterparts with a signal-to-noise ratio &gt;4.5 (1σ ≃ 30–70 μJy beam−1 at 1.2 mm). Their median redshift is estimated to be $z$median = 2.38 ± 0.14. They generally follow the tight relationship of the stellar mass versus star formation rate (i.e., the main sequence of star-forming galaxies). ALMA-detected ZFOURGE sources exhibit systematically larger infrared (IR) excess (IRX ≡ LIR/LUV) compared to ZFOURGE galaxies without ALMA detections even though they have similar redshifts, stellar masses, and star formation rates. This implies the consensus stellar-mass versus IRX relation, which is known to be tight among rest-frame-ultraviolet-selected galaxies, cannot fully predict the ALMA detectability of stellar-mass-selected galaxies. We find that ALMA-detected ZFOURGE sources are the main contributors to the cosmic IR star formation rate density at $z$ = 2–3.


Author(s):  
Mahavir Sharma ◽  
Tom Theuns

Abstract We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is set by the balance between energy injected by feedback from massive stars and energy lost by the deepening of the potential of its host dark matter halo due to cosmological accretion. Such a balance is secularly stable provided that the star formation rate increases with the pressure in the star forming gas. The Iκεα model has four parameters that together control the feedback from star formation and the cosmological accretion rate onto a halo. Iκεα reproduces accurately the star formation rate as a function of halo mass and redshift in the eagle hydrodynamical simulation, even when all four parameters are held constant. It predicts the emergence of a star forming main sequence along which the specific star formation rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We briefly discuss the emerging mass-metallicity relation, the evolution of the galaxy stellar mass function, and an extension of the model that includes feedback from active galactic nuclei (AGN). These self-regulation results are independent of the star formation law and the galaxy’s gas content. Instead, star forming galaxies are shaped by the balance between stellar feedback and cosmological accretion, with accurately accounting for energy losses associated with feedback a crucial ingredient.


2020 ◽  
Vol 492 (4) ◽  
pp. 5592-5606 ◽  
Author(s):  
A Katsianis ◽  
V Gonzalez ◽  
D Barrientos ◽  
X Yang ◽  
C D P Lagos ◽  
...  

ABSTRACT There is a severe tension between the observed star formation rate (SFR)–stellar mass (M⋆) relations reported by different authors at z = 1–4. In addition, the observations have not been successfully reproduced by state-of-the-art cosmological simulations that tend to predict a factor of 2–4 smaller SFRs at a fixed M⋆. We examine the evolution of the SFR–M⋆ relation of z = 1–4 galaxies using the skirt simulated spectral energy distributions of galaxies sampled from the Evolution and Assembly of GaLaxies and their Environments simulations. We derive SFRs and stellar masses by mimicking different observational techniques. We find that the tension between observed and simulated SFR–M⋆ relations is largely alleviated if similar methods are used to infer the galaxy properties. We find that relations relying on infrared wavelengths (e.g. 24 ${\rm \, \mu m}$, MIPS – 24, 70, and 160 ${\rm \, \mu m}$ or SPIRE – 250, 350, and 500 ${\rm \, \mu m}$) have SFRs that exceed the intrinsic relation by 0.5 dex. Relations that rely on the spectral energy distribution fitting technique underpredict the SFRs at a fixed stellar mass by −0.5 dex at z ∼ 4 but overpredict the measurements by 0.3 dex at z ∼ 1. Relations relying on dust-corrected rest-frame ultraviolet luminosities, are flatter since they overpredict/underpredict SFRs for low/high star-forming objects and yield deviations from the intrinsic relation from 0.10 to −0.13 dex at z ∼ 4. We suggest that the severe tension between different observational studies can be broadly explained by the fact that different groups employ different techniques to infer their SFRs.


2019 ◽  
Vol 485 (4) ◽  
pp. 4817-4840 ◽  
Author(s):  
Martina Donnari ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Mark Vogelsberger ◽  
Shy Genel ◽  
...  

Abstract We select galaxies from the IllustrisTNG hydrodynamical simulations ($M_{\rm stars}\gt 10^9 \, {\rm M}_\odot$ at 0 ≤ z ≤ 2) and characterize the shapes and evolutions of their UVJ and star formation rate–stellar mass (SFR–Mstars) diagrams. We quantify the systematic uncertainties related to different criteria to classify star-forming versus quiescent galaxies, different SFR estimates, and by accounting for the star formation measured within different physical apertures. The TNG model returns the observed features of the UVJ diagram at z ≤ 2, with a clear separation between two classes of galaxies. It also returns a tight star-forming main sequence (MS) for $M_{\rm stars}\lt 10^{10.5} \, ({\rm M}_\odot)$ with a ∼0.3 dex scatter at z ∼ 0 in our fiducial choices. If a UVJ-based cut is adopted, the TNG MS exhibits a downwardly bending at stellar masses of about 1010.5−10.7 M⊙. Moreover, the model predicts that ${\sim }80\, (50)$ per cent of 1010.5−11 M⊙ galaxies at z = 0 (z = 2) are quiescent and the numbers of quenched galaxies at intermediate redshifts and high masses are in better agreement with observational estimates than previous models. However, shorter SFR-averaging time-scales imply higher normalizations and scatter of the MS, while smaller apertures lead to underestimating the galaxy SFRs: overall we estimate the inspected systematic uncertainties to sum up to about 0.2−0.3 dex in the locus of the MS and to about 15 percentage points in the fraction of quenched galaxies. While TNG colour distributions are clearly bimodal, this is not the case for the SFR logarithmic distributions in bins of stellar mass (SFR ≳ 10−3 M⊙yr−1). Finally, the slope and z = 0 normalization of the TNG MS are consistent with observational findings; however, the locus of the TNG MS remains lower by about 0.2−0.5 dex at 0.75 ≤ z &lt; 2 than the available observational estimates taken at face value.


Sign in / Sign up

Export Citation Format

Share Document