scholarly journals Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv

2020 ◽  
Vol 643 ◽  
pp. A113 ◽  
Author(s):  
K. Ackley ◽  
L. Amati ◽  
C. Barbieri ◽  
F. E. Bauer ◽  
S. Benetti ◽  
...  

Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS. Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger. Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups. Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger. Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

2022 ◽  
Vol 21 (12) ◽  
pp. 308
Author(s):  
Mu-Xin Liu ◽  
Hui Tong ◽  
Yi-Ming Hu ◽  
Man-Leong Chan ◽  
Zhu Liu ◽  
...  

Abstract The multi-messenger observation of coalescing compact binary systems promises great scientific treasure. However, synthesising observations from both gravitational wave and electromagnetic channels remains challenging. In the context of the day-to-week long emission from a macronova, the binary neutron star merger GW170817 remains the only event with successful electromagnetic followup. In this manuscript, we explore the possibility of using the early stage X-ray afterglow to search for the electromagnetic counterpart of a gravitational wave event. Two algorithms, the simple and straightforward sequential observation (SO) and the step-wise optimizing local optimization are considered and applied to some simulated events. We consider the WXT from the proposed Einstein Probe as a candidate X-ray telescope, which has a very wide field of view of 3600 deg2. Benefiting from the large field of view and high sensitivity, we find that the SO algorithm not only is easy to implement, but also promises a good chance of actual detection.


Author(s):  
Nils Andersson

This chapter provides a brief survey of gravitational-wave astronomy, including the recent recent breakthrough detection. It sets the stage for the rest of the book via simple back-of-the-envelope estimates for different sets of sources. The chapter also describes the first detection of a black hole merger (GW150914) as well as the first observed neutron star binary event (GW170817) and introduces some of the ideas required to understand these breakthroughs.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 231
Author(s):  
Kilar Zhang ◽  
Feng-Li Lin

Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called hybrid stars. In particular, in GW190814, a new compact object with 2.6 M⊙ is reported. This could be the lightest black hole, the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid stars which will constrain the possible SIDM models.


2020 ◽  
Vol 639 ◽  
pp. A15
Author(s):  
Raphaël Duque ◽  
Paz Beniamini ◽  
Frédéric Daigne ◽  
Robert Mochkovitch

The only binary neutron star merger gravitational wave event with detected electromagnetic counterparts recorded to date is GRB170817A. This merger occurred in a rarefied medium with a density smaller than 10−3 − 10−2 cm−3. Since kicks are imparted to neutron star binaries upon formation, and due to their long delay times before merger, such low-density circum-merger media are generally expected. However, there is some indirect evidence for fast-merging or low-kick binaries, which would coalesce in denser environments. Nonetheless, present astronomical data are largely inconclusive on the possibility of these high-density mergers. We describe a method to directly probe this hypothetical population of high-density mergers through multi-messenger observations of binary neutron star merger afterglows, exploiting the high sensitivity of these signals to the density of the merger environment. This method is based on a sample of merger afterglows that has yet to be collected. Its constraining power is large, even with a small sample of events. We discuss the method’s limitations and applicability. In the upcoming era of third-generation gravitational wave detectors, this method’s potential will be fully realized as it will allow us to probe mergers that occurred soon after the peak of cosmic star formation, provided the follow-up campaigns are able to locate the sources.


2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Nathaniel Indik ◽  
K. Haris ◽  
Tito Dal Canton ◽  
Henning Fehrmann ◽  
Badri Krishnan ◽  
...  

2015 ◽  
Vol 11 (S319) ◽  
pp. 55-55
Author(s):  
Naoyuki Tamura ◽  

AbstractThis short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (http://pfs.ipmu.jp), blog (http://pfs.ipmu.jp/blog/), and references therein.The project, instrument, & timelinePFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019.The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010M⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky Way, dwarf spheroids, and M31 will be used to understand the past assembly histories of those galaxies and the structures of their dark matter halos. Spectra will be taken for 1 million stars as faint as V = 22 mag therefore out to large distances from the Sun.PFS will provide powerful spectroscopic capabilities even in the era of Euclid, LSST, WFIRST and TMT, and the effective synergies are expected for further unique science outputs.


2021 ◽  
Vol 916 (2) ◽  
pp. 114
Author(s):  
Fumiya Imazato ◽  
Mahito Sasada ◽  
Makoto Uemura ◽  
Yasushi Fukazawa ◽  
Hiromitsu Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document